forked from hugochan/KATE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_doc_retrieval.py
88 lines (73 loc) · 3.67 KB
/
run_doc_retrieval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
'''
Created on Dec, 2016
@author: hugo
'''
from __future__ import absolute_import
import argparse
import numpy as np
from keras.utils import np_utils
from autoencoder.testing.retrieval import retrieval, retrieval_by_doclength
from autoencoder.utils.io_utils import load_json, load_marshal
from autoencoder.preprocessing.preprocessing import load_corpus
def main():
parser = argparse.ArgumentParser()
parser.add_argument('train_doc_codes', type=str, help='path to the train doc codes file')
parser.add_argument('train_doc_labels', type=str, help='path to the train doc labels file')
parser.add_argument('test_doc_codes', type=str, help='path to the test doc codes file')
parser.add_argument('test_doc_labels', type=str, help='path to the test doc labels file')
parser.add_argument('-nv', '--n_val', type=int, default=1000, help='size of validation set (default 1000)')
parser.add_argument('-qi', '--query_info', type=str, help='path to the query corpus (for geting doc length info)')
parser.add_argument('-ml', '--multilabel', action='store_true', help='multilabel flag')
args = parser.parse_args()
# autoencoder
train_doc_codes = load_json(args.train_doc_codes)
train_doc_labels = load_json(args.train_doc_labels)
test_doc_codes = load_json(args.test_doc_codes)
test_doc_labels = load_json(args.test_doc_labels)
X_train = np.r_[train_doc_codes.values()]
Y_train = np.array([train_doc_labels[i] for i in train_doc_codes])
X_test = np.r_[test_doc_codes.values()]
Y_test = np.array([test_doc_labels[i] for i in test_doc_codes])
# # DocNADE
# train_doc_codes = load_json(args.train_doc_codes)
# train_doc_labels = load_json(args.train_doc_labels)
# test_doc_codes = load_json(args.test_doc_codes)
# test_doc_labels = load_json(args.test_doc_labels)
# X_train = []
# for each in train_doc_codes.values():
# X_train.append([float(x) for x in each])
# X_test = []
# for each in test_doc_codes.values():
# X_test.append([float(x) for x in each])
# X_train = np.r_[X_train]
# Y_train = np.array([train_doc_labels[i] for i in train_doc_codes])
# X_test = np.r_[X_test]
# Y_test = np.array([test_doc_labels[i] for i in test_doc_codes])
# # DBN
# X_train = np.array(load_marshal(args.train_doc_codes))
# Y_train = np.array(load_marshal(args.train_doc_labels))
# X_test = np.array(load_marshal(args.test_doc_codes))
# Y_test = np.array(load_marshal(args.test_doc_labels))
seed = 7
np.random.seed(seed)
val_idx = np.random.choice(range(X_train.shape[0]), args.n_val, replace=False)
train_idx = list(set(range(X_train.shape[0])) - set(val_idx))
X_new_train = X_train[train_idx]
Y_new_train = Y_train[train_idx]
X_new_val = X_train[val_idx]
Y_new_val = Y_train[val_idx]
print 'train: %s, val: %s, test: %s' % (X_new_train.shape[0], X_new_val.shape[0], X_test.shape[0])
results = retrieval(X_new_train, Y_new_train, X_new_val, Y_new_val,\
fractions=[0.001], multilabel=args.multilabel)
print 'precision on val set: %s' % results
if not args.query_info:
results = retrieval(X_train, Y_train, X_test, Y_test,\
fractions=[0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1.0], multilabel=args.multilabel)
else:
query_docs = load_corpus(args.query_info)['docs']
len_test = [sum(query_docs[i].values()) for i in test_doc_codes]
results = retrieval_by_doclength(X_train, Y_train, X_test, Y_test, len_test, fraction=0.001, multilabel=args.multilabel)
print 'precision on test set: %s' % results
import pdb;pdb.set_trace()
if __name__ == '__main__':
main()