forked from jorgecasas/php-ml
-
Notifications
You must be signed in to change notification settings - Fork 0
/
KernelPCATest.php
86 lines (71 loc) · 3.38 KB
/
KernelPCATest.php
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
<?php
declare(strict_types=1);
namespace Phpml\Tests\DimensionReduction;
use Phpml\DimensionReduction\KernelPCA;
use Phpml\Exception\InvalidArgumentException;
use Phpml\Exception\InvalidOperationException;
use PHPUnit\Framework\TestCase;
class KernelPCATest extends TestCase
{
public function testKernelPCA(): void
{
// Acceptable error
$epsilon = 0.001;
// A simple example whose result is known beforehand
$data = [
[2, 2], [1.5, 1], [1., 1.5], [1., 1.],
[2., 1.], [2, 2.5], [2., 3.], [1.5, 3],
[1., 2.5], [1., 2.7], [1., 3.], [1, 3],
[1, 2], [1.5, 2], [1.5, 2.2], [1.3, 1.7],
[1.7, 1.3], [1.5, 1.5], [1.5, 1.6], [1.6, 2],
[1.7, 2.1], [1.3, 1.3], [1.3, 2.2], [1.4, 2.4],
];
$transformed = [
[0.016485613899708], [-0.089805657741674], [-0.088695974245924], [-0.069761503810802],
[-0.068049558133392], [-0.054702087779187], [-0.063229228729333], [-0.06852813588679],
[-0.10098315410297], [-0.15617881000654], [-0.21266832077299], [-0.21266832077299],
[-0.039234518840831], [0.40858295942991], [0.40110375047242], [-0.10555116296691],
[-0.13128352866095], [-0.20865959471756], [-0.17531601535848], [0.4240660966961],
[0.36351946685163], [-0.14334173054136], [0.22454914091011], [0.15035027480881], ];
$kpca = new KernelPCA(KernelPCA::KERNEL_RBF, null, 1, 15.);
$reducedData = $kpca->fit($data);
// Due to the fact that the sign of values can be flipped
// during the calculation of eigenValues, we have to compare
// absolute value of the values
array_map(function ($val1, $val2) use ($epsilon): void {
self::assertEqualsWithDelta(abs($val1[0]), abs($val2[0]), $epsilon);
}, $transformed, $reducedData);
// Fitted KernelPCA object can also transform an arbitrary sample of the
// same dimensionality with the original dataset
$newData = [1.25, 2.25];
$newTransformed = [0.18956227539216];
$newTransformed2 = $kpca->transform($newData);
self::assertEqualsWithDelta(abs($newTransformed[0]), abs($newTransformed2[0]), $epsilon);
}
public function testKernelPCAThrowWhenKernelInvalid(): void
{
$this->expectException(InvalidArgumentException::class);
$this->expectExceptionMessage('KernelPCA can be initialized with the following kernels only: Linear, RBF, Sigmoid and Laplacian');
new KernelPCA(0, null, 1, 15.);
}
public function testTransformThrowWhenNotFitted(): void
{
$samples = [1, 0];
$kpca = new KernelPCA(KernelPCA::KERNEL_RBF, null, 1, 15.);
$this->expectException(InvalidOperationException::class);
$this->expectExceptionMessage('KernelPCA has not been fitted with respect to original dataset, please run KernelPCA::fit() first');
$kpca->transform($samples);
}
public function testTransformThrowWhenMultiDimensionalArrayGiven(): void
{
$samples = [
[1, 0],
[1, 1],
];
$kpca = new KernelPCA(KernelPCA::KERNEL_RBF, null, 1, 15.);
$kpca->fit($samples);
$this->expectException(InvalidArgumentException::class);
$this->expectExceptionMessage('KernelPCA::transform() accepts only one-dimensional arrays');
$kpca->transform($samples);
}
}