forked from courao/ocr.pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcrnn.py
252 lines (192 loc) · 7.98 KB
/
crnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
import torch.nn as nn
from collections import OrderedDict
class BidirectionalLSTM(nn.Module):
def __init__(self, nIn, nHidden, nOut):
super(BidirectionalLSTM, self).__init__()
self.rnn = nn.LSTM(nIn, nHidden, bidirectional=True)
self.embedding = nn.Linear(nHidden * 2, nOut)
def forward(self, input):
recurrent, _ = self.rnn(input)
T, b, h = recurrent.size()
t_rec = recurrent.view(T * b, h)
output = self.embedding(t_rec) # [T * b, nOut]
output = output.view(T, b, -1)
return output
class CRNN(nn.Module):
def __init__(self, imgH, nc, nclass, nh, leakyRelu=False):
super(CRNN, self).__init__()
assert imgH % 16 == 0, 'imgH has to be a multiple of 16'
# 1x32x128
self.conv1 = nn.Conv2d(nc, 64, 3, 1, 1)
self.relu1 = nn.ReLU(True)
self.pool1 = nn.MaxPool2d(2, 2)
# 64x16x64
self.conv2 = nn.Conv2d(64, 128, 3, 1, 1)
self.relu2 = nn.ReLU(True)
self.pool2 = nn.MaxPool2d(2, 2)
# 128x8x32
self.conv3_1 = nn.Conv2d(128, 256, 3, 1, 1)
self.bn3 = nn.BatchNorm2d(256)
self.relu3_1 = nn.ReLU(True)
self.conv3_2 = nn.Conv2d(256, 256, 3, 1, 1)
self.relu3_2 = nn.ReLU(True)
self.pool3 = nn.MaxPool2d((2, 2), (2, 1), (0, 1))
# 256x4x16
self.conv4_1 = nn.Conv2d(256, 512, 3, 1, 1)
self.bn4 = nn.BatchNorm2d(512)
self.relu4_1 = nn.ReLU(True)
self.conv4_2 = nn.Conv2d(512, 512, 3, 1, 1)
self.relu4_2 = nn.ReLU(True)
self.pool4 = nn.MaxPool2d((2, 2), (2, 1), (0, 1))
# 512x2x16
self.conv5 = nn.Conv2d(512, 512, 2, 1, 0)
self.bn5 = nn.BatchNorm2d(512)
self.relu5 = nn.ReLU(True)
# 512x1x16
self.rnn = nn.Sequential(
BidirectionalLSTM(512, nh, nh),
BidirectionalLSTM(nh, nh, nclass))
def forward(self, input):
# conv features
x = self.pool1(self.relu1(self.conv1(input)))
x = self.pool2(self.relu2(self.conv2(x)))
x = self.pool3(self.relu3_2(self.conv3_2(self.relu3_1(self.bn3(self.conv3_1(x))))))
x = self.pool4(self.relu4_2(self.conv4_2(self.relu4_1(self.bn4(self.conv4_1(x))))))
conv = self.relu5(self.bn5(self.conv5(x)))
# print(conv.size())
b, c, h, w = conv.size()
assert h == 1, "the height of conv must be 1"
conv = conv.squeeze(2)
conv = conv.permute(2, 0, 1) # [w, b, c]
# rnn features
output = self.rnn(conv)
return output
class CRNN_v2(nn.Module):
def __init__(self, imgH, nc, nclass, nh, leakyRelu=False):
super(CRNN_v2, self).__init__()
assert imgH % 16 == 0, 'imgH has to be a multiple of 16'
# 1x32x128
self.conv1_1 = nn.Conv2d(nc, 32, 3, 1, 1)
self.bn1_1 = nn.BatchNorm2d(32)
self.relu1_1 = nn.ReLU(True)
self.conv1_2 = nn.Conv2d(32, 64, 3, 1, 1)
self.bn1_2 = nn.BatchNorm2d(64)
self.relu1_2 = nn.ReLU(True)
self.pool1 = nn.MaxPool2d(2, 2)
# 64x16x64
self.conv2_1 = nn.Conv2d(64, 64, 3, 1, 1)
self.bn2_1 = nn.BatchNorm2d(64)
self.relu2_1 = nn.ReLU(True)
self.conv2_2 = nn.Conv2d(64, 128, 3, 1, 1)
self.bn2_2 = nn.BatchNorm2d(128)
self.relu2_2 = nn.ReLU(True)
self.pool2 = nn.MaxPool2d(2, 2)
# 128x8x32
self.conv3_1 = nn.Conv2d(128, 96, 3, 1, 1)
self.bn3_1 = nn.BatchNorm2d(96)
self.relu3_1 = nn.ReLU(True)
self.conv3_2 = nn.Conv2d(96, 192, 3, 1, 1)
self.bn3_2 = nn.BatchNorm2d(192)
self.relu3_2 = nn.ReLU(True)
self.pool3 = nn.MaxPool2d((2, 2), (2, 1), (0, 1))
# 192x4x32
self.conv4_1 = nn.Conv2d(192, 128, 3, 1, 1)
self.bn4_1 = nn.BatchNorm2d(128)
self.relu4_1 = nn.ReLU(True)
self.conv4_2 = nn.Conv2d(128, 256, 3, 1, 1)
self.bn4_2 = nn.BatchNorm2d(256)
self.relu4_2 = nn.ReLU(True)
self.pool4 = nn.MaxPool2d((2, 2), (2, 1), (0, 1))
# 256x2x32
self.bn5 = nn.BatchNorm2d(256)
# 256x2x32
self.rnn = nn.Sequential(
BidirectionalLSTM(512, nh, nh),
BidirectionalLSTM(nh, nh, nclass))
def forward(self, input):
# conv features
x = self.pool1(self.relu1_2(self.bn1_2(self.conv1_2(self.relu1_1(self.bn1_1(self.conv1_1(input)))))))
x = self.pool2(self.relu2_2(self.bn2_2(self.conv2_2(self.relu2_1(self.bn2_1(self.conv2_1(x)))))))
x = self.pool3(self.relu3_2(self.bn3_2(self.conv3_2(self.relu3_1(self.bn3_1(self.conv3_1(x)))))))
x = self.pool4(self.relu4_2(self.bn4_2(self.conv4_2(self.relu4_1(self.bn4_1(self.conv4_1(x)))))))
conv = self.bn5(x)
# print(conv.size())
b, c, h, w = conv.size()
assert h == 2, "the height of conv must be 2"
conv = conv.reshape([b,c*h,w])
conv = conv.permute(2, 0, 1) # [w, b, c]
# rnn features
output = self.rnn(conv)
return output
def conv3x3(nIn, nOut, stride=1):
# "3x3 convolution with padding"
return nn.Conv2d( nIn, nOut, kernel_size=3, stride=stride, padding=1, bias=False )
class basic_res_block(nn.Module):
def __init__(self, nIn, nOut, stride=1, downsample=None):
super( basic_res_block, self ).__init__()
m = OrderedDict()
m['conv1'] = conv3x3( nIn, nOut, stride )
m['bn1'] = nn.BatchNorm2d( nOut )
m['relu1'] = nn.ReLU( inplace=True )
m['conv2'] = conv3x3( nOut, nOut )
m['bn2'] = nn.BatchNorm2d( nOut )
self.group1 = nn.Sequential( m )
self.relu = nn.Sequential( nn.ReLU( inplace=True ) )
self.downsample = downsample
def forward(self, x):
if self.downsample is not None:
residual = self.downsample( x )
else:
residual = x
out = self.group1( x ) + residual
out = self.relu( out )
return out
class CRNN_res(nn.Module):
def __init__(self, imgH, nc, nclass, nh):
super(CRNN_res, self).__init__()
assert imgH % 16 == 0, 'imgH has to be a multiple of 16'
self.conv1 = nn.Conv2d(nc, 64, 3, 1, 1)
self.relu1 = nn.ReLU(True)
self.res1 = basic_res_block(64, 64)
# 1x32x128
down1 = nn.Sequential(nn.Conv2d(64, 128, kernel_size=1, stride=2, bias=False),nn.BatchNorm2d(128))
self.res2_1 = basic_res_block( 64, 128, 2, down1 )
self.res2_2 = basic_res_block(128,128)
# 64x16x64
down2 = nn.Sequential(nn.Conv2d(128, 256, kernel_size=1, stride=2, bias=False),nn.BatchNorm2d(256))
self.res3_1 = basic_res_block(128, 256, 2, down2)
self.res3_2 = basic_res_block(256, 256)
self.res3_3 = basic_res_block(256, 256)
# 128x8x32
down3 = nn.Sequential(nn.Conv2d(256, 512, kernel_size=1, stride=(2, 1), bias=False),nn.BatchNorm2d(512))
self.res4_1 = basic_res_block(256, 512, (2, 1), down3)
self.res4_2 = basic_res_block(512, 512)
self.res4_3 = basic_res_block(512, 512)
# 256x4x16
self.pool = nn.AvgPool2d((2, 2), (2, 1), (0, 1))
# 512x2x16
self.conv5 = nn.Conv2d(512, 512, 2, 1, 0)
self.bn5 = nn.BatchNorm2d(512)
self.relu5 = nn.ReLU(True)
# 512x1x16
self.rnn = nn.Sequential(
BidirectionalLSTM(512, nh, nh),
BidirectionalLSTM(nh, nh, nclass))
def forward(self, input):
# conv features
x = self.res1(self.relu1(self.conv1(input)))
x = self.res2_2(self.res2_1(x))
x = self.res3_3(self.res3_2(self.res3_1(x)))
x = self.res4_3(self.res4_2(self.res4_1(x)))
x = self.pool(x)
conv = self.relu5(self.bn5(self.conv5(x)))
# print(conv.size())
b, c, h, w = conv.size()
assert h == 1, "the height of conv must be 1"
conv = conv.squeeze(2)
conv = conv.permute(2, 0, 1) # [w, b, c]
# rnn features
output = self.rnn(conv)
return output
if __name__ == '__main__':
pass