-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
421 lines (330 loc) · 16.8 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
import argparse
import datetime as dt
import typing
from sys import argv
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from sklearn.linear_model import LinearRegression, Ridge
from sklearn.metrics import mean_squared_error as mse
from sklearn.model_selection import learning_curve
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import PolynomialFeatures
from gaussian_features import GaussianFeatures
def is_morning(t: dt.time) -> bool:
"""
Checks whether the given time is within the morning time frame for when Nook's Cranny is open.
:param t: The time to check.
:return: True if the given time is between 8am and noon. False otherwise.
"""
opening_time = dt.time(hour=8, minute=0, second=0)
noon = dt.time(hour=12, minute=0, second=0)
return opening_time <= t <= noon
def is_evening(t: dt.time) -> bool:
"""
Checks whether the given time is within the evening time frame when Nook's Cranny is open.
:param t: The time to check.
:return: True if the time is between noon and 10pm. False otherwise.
"""
closing_time = dt.time(hour=22, minute=0, second=0)
noon = dt.time(hour=12, minute=0, second=0)
return noon <= t <= closing_time
def is_open(t: dt.time) -> bool:
"""
Checks whether the given time is within the window of when Nook's Cranny is open or not.
:param t: The time to check
:return: True if the given time is between 8am and 10pm. False otherwise.
"""
opening_time = dt.time(hour=8, minute=0, second=0)
closing_time = dt.time(hour=22, minute=0, second=0)
return opening_time <= t <= closing_time
def get_time_frame_dist(dt1: dt.datetime, dt2: dt.datetime) -> int:
"""
Gets the number of time frames between the two dates and times.
A time frame is either a morning or an evening within a single day. This is because
turnip prices will change twice in a day, once when Nook's Cranny opens at 8am,
and again at noon, when it is evening.
:param dt1: The datetime that's before dt2
:param dt2: The datetime that's after dt1
:return: the number of time frames between the given dates and times.
"""
diff_days = (dt2 - dt1).days
output = diff_days * 2
if is_evening(dt1.time()) != is_evening(dt2.time()):
output += 1
return output
def parse_args():
"""
Parses the arguments for this program.
:return: The Namespace that contains the parsed arguments.
"""
parser: argparse.ArgumentParser = argparse.ArgumentParser(
description='Predict future turnip prices in Animal Crossing: New Horizons')
parser.add_argument('-f', '--filepath', required=True, type=str,
help='The file that holds the previous turnip prices.')
parser.add_argument('-M', '--model', required=False, type=str, choices=['l', 'p', 'g', 'r'], default=None,
help='The model to use. A prompt with minor explanations will be provided if this arg isn\'t '
'used.')
parser.add_argument('-P', '--predictions', required=False, type=int, default=5,
help='The number of possible future turnip prices the model will output. Default is 5.')
parser.add_argument('-N', '--gaussian_features', required=False, type=int, default=20,
help='The number of gaussian features to use with using the Gaussian-based models (r, '
'g). Default is 20.')
parser.add_argument('-a', '--alpha', required=False, type=float, default=.1,
help='The alpha value to use for regularized models (r). Default value is .1.')
parser.add_argument('-d', '--degrees', required=False, type=int, default=2,
help='The number of degrees to use for the polynomial based models (p). Default is 2.')
parser.add_argument('-r', '--add_data', required=False, action='store_true',
help='Add random data to the model processing.')
parser.add_argument('-I', '--iterations', required=False, type=int, default=0,
help='The number of iterations to add random data to the input.')
return parser.parse_args(argv[1:])
def get_data(filepath: str) -> pd.DataFrame:
"""
Gets the data at the provided file path.
:param filepath: The file path that holds the data to be loaded into the program.
:return: The data frame holding the turnip prices and datetimes for those prices.
"""
if filepath.endswith('.csv'):
return pd.read_csv(filepath)
raise ValueError('Unsupported data file. Can only support CSV\'s.')
def organize_data(df: pd.DataFrame) -> pd.DataFrame:
"""
Organizes and cleans the provided data to use time frames, rather than datetimes as the independent variable.
:param df: The raw data frame.
:return: The cleaned up data frame.
"""
prices = df['price']
dates_and_times = pd.to_datetime(df['date_time'])
time_frames = []
for index, dnt in enumerate(dates_and_times.values):
if index == 0:
time_frames += [0]
else:
dt1 = dates_and_times[index - 1].to_pydatetime()
dt2 = pd.to_datetime(dnt).to_pydatetime()
distance = get_time_frame_dist(dt1, dt2)
time_frames += [time_frames[-1] + distance]
return pd.DataFrame(data={'time_frame': time_frames, 'price': prices})
def add_artificial_data(df: pd.DataFrame, num_iterations: int = 5) -> pd.DataFrame:
values: np.ndarray = df.values
output = values
generator = np.random.default_rng()
prices_std_dev: float = values[:, 1].std() / 6.
time_frames_std_dev: float = values[:, 0].std() / 6.
for i in range(num_iterations):
multiplier: float = 1 if i % 2 == 0 else -1
output = np.vstack((output, values + multiplier * generator.normal(scale=(time_frames_std_dev, prices_std_dev),
size=values.shape)))
return pd.DataFrame(data={'time_frame': output[:, 0], 'price': output[:, 1]})
def plot_learning_curve(model, time_frames: np.ndarray, prices: np.ndarray, cv: int = 5):
"""
Plots the training/validation curve for the model with the given data.
:param model: The model to be examined.
:param time_frames: The independent variables of the data.
:param prices: The dependent variables of the data.
:param cv: The number of cross-validation folds to perform on the data.
"""
# TODO: Input data is too small to perform cross-validation.
n_samples_used, train_lc, val_lc = learning_curve(model, time_frames, prices, cv=cv)
plt.plot(n_samples_used, np.mean(train_lc, 1), label='training score')
plt.plot(n_samples_used, np.mean(val_lc, 1), label='validation score')
plt.legend(loc='best')
plt.ylabel('score')
plt.show()
def map_pattern(pattern: typing.Union[str, int]) -> typing.Union[str, int, None]:
patterns: typing.Dict[str, int] = {
'downward': 0,
'slow-spike': 1,
'sudden-spike': 2,
'standard': 3
}
if type(pattern) is str:
return patterns[pattern]
elif type(pattern) is int:
inverted_patterns: typing.Dict[int, str] = {v: k for k, v in patterns.items()}
return inverted_patterns[pattern]
return None
def get_chances(last_pattern: str) -> typing.Tuple[typing.Dict[str, float], float]:
low: float = .25
high: float = .75
medium: float = .5
chances: typing.Dict[str, typing.Dict[str, float]] = {
'downward': {
'standard': medium,
'sudden-spike': high,
'downward': low,
'slow-spike': medium
},
'standard': {
'standard': low,
'sudden-spike': medium,
'downward': low,
'slow-spike': high
},
'sudden-spike': {
'standard': high,
'sudden-spike': low,
'downward': low,
'slow-spike': medium
},
'slow-spike': {
'standard': high,
'sudden-spike': medium,
'downward': low,
'slow-spike': low
}
}
return chances[last_pattern], np.average([low, medium, high])
def get_pattern(time_frames: pd.Series, prices: pd.Series, last_pattern: str, purchase_price: int) -> str:
possibilities: typing.List[str] = ['downward', 'standard', 'slow-spike', 'sudden-spike']
chances: typing.Dict[str, float] = {p: 1. / len(possibilities) for p in possibilities}
chance_modifier: float = 0.05
if purchase_price < 100:
chances['downward'] -= chance_modifier
chances['slow-spike'] += chance_modifier
chances['sudden-spike'] += chance_modifier
else:
chances['downward'] += chance_modifier
chances['slow-spike'] -= chance_modifier
chances['sudden-spike'] -= chance_modifier
pattern_chances, chance_avg = get_chances(last_pattern)
for k, v in pattern_chances.items():
chances[k] += v - chance_avg
linear_model = np.poly1d(np.polyfit(time_frames, prices, deg=1))
quad_model = np.poly1d(np.polyfit(time_frames, prices, deg=2))
linear_mse = mse(linear_model(time_frames), prices)
quad_mse = mse(quad_model(time_frames), prices)
chance_modifier = .25
if linear_mse < quad_mse:
chances['slow-spike'] -= chance_modifier
chances['sudden-spike'] -= chance_modifier
if linear_model.coeffs[0] <= -1:
chances['downward'] += chance_modifier
chances['standard'] -= chance_modifier
else:
chances['downward'] -= chance_modifier
chances['standard'] += chance_modifier
else:
# TODO: See how I could get the difference between slow and sudden spike
# I would assume currently that it would be because the a in
# ax**2 + bx + c is greater than a certain value.
chances['slow-spike'] += chance_modifier
chances['sudden-spike'] += chance_modifier
chances['standard'] -= chance_modifier
chances['downward'] -= chance_modifier
# Get the greatest likelihood by sorted it by value increasing.
return [k for k, v in sorted(chances.items(), key=lambda i: i[1])][-1]
def predict_with_regulated_gaussian(time_frames: pd.Series, prices: pd.Series, num_predictions: int,
args: argparse.Namespace):
"""
Performs a Regularized Gaussian Features regression analysis on the given data with the provided args.
:param time_frames: The independent variables of the data. Shape = (N_Samples)
:param prices: The dependent variables of the data. Shape = (N_Samples)
:param num_predictions: The number of predictions to make for future time frames.
:param args: The arguments for the program to alter hyper parameters.
:return: The predictions of the data (Shape: (N_Samples, 2)), the model's prediction function, and the title for plotting.
"""
# Since the data is in the range of 30-500, we can assume that the input data is dense.
# So an L2 Norm using Ridge is probably best, rather than the L1 Norm, Lasso
model = make_pipeline(GaussianFeatures(N=args.gaussian_features), Ridge(alpha=args.alpha))
model.fit(time_frames.values[:, np.newaxis], prices)
last_time_frame: int = time_frames.values[-1]
prediction_x = np.arange(last_time_frame + 1, last_time_frame + num_predictions)
predictions = model.predict(prediction_x[:, np.newaxis])
return np.array(
list(zip(prediction_x, predictions))), model.predict, f'N: {args.gaussian_features}, L2 a: {args.alpha}'
def predict_with_gaussian_features(time_frames: pd.Series, prices: pd.Series, num_predictions: int,
args: argparse.Namespace):
"""
Predicts the future turnip prices using a Gaussian Features model given the provided data and hyper parameters within args.
:param time_frames: The time frames that have previously been recorded for the prices.
:param prices: The prices for the turnip at those time frames.
:param num_predictions: The number of predictions to make for future turnip prices.
:param args: The args for the program that hold hyper parameters.
:return: The predictions (Shape: (N_Predictions, 2)), the model's prediction function, and the title for plotting.
"""
gauss_model = make_pipeline(GaussianFeatures(args.gaussian_features), LinearRegression())
gauss_model.fit(time_frames.values[:, np.newaxis], prices)
last_time_frame: int = time_frames.values[-1]
prediction_x = np.arange(last_time_frame + 1, last_time_frame + num_predictions)
predictions = gauss_model.predict(prediction_x[:, np.newaxis])
return np.array(list(zip(prediction_x, predictions))), gauss_model.predict, f'N: {args.gaussian_features}'
def predict_with_polyfit(time_frames: pd.Series, prices: pd.Series, num_predictions: int, args: argparse.Namespace):
poly_model = make_pipeline(PolynomialFeatures(degree=args.degrees, include_bias=False),
LinearRegression())
poly_model.fit(time_frames[:, np.newaxis], prices)
last_time_frame = time_frames.values[-1]
prediction_x = np.arange(last_time_frame + 1, last_time_frame + num_predictions)
prediction = poly_model.predict(prediction_x[:, np.newaxis])
return np.array(list(zip(prediction_x, prediction))), poly_model.predict, f'Degrees: {args.degrees}'
def predict_with_linear_model(time_frames: pd.Series, prices: pd.Series, num_predictions: int,
args: argparse.Namespace):
model: LinearRegression = LinearRegression().fit(time_frames.values[:, np.newaxis], prices[:, np.newaxis])
print(f'Model parameters: coefficients: {model.coef_}, intercepts: {model.intercept_}')
last_time_frame = time_frames.values[-1]
prediction_x = np.reshape(np.arange(last_time_frame + 1, last_time_frame + num_predictions), (-1, 1))
prediction = model.predict(prediction_x)
return np.array(list(zip(prediction_x,
prediction))), model.predict, \
f'Coefficient: {model.coef_[0][0]:.2f}, Intercept: {model.intercept_[0]:.2f} '
def plot(time_frames: pd.Series, prices: pd.Series, prediction, model_coefficients: np.ndarray, name: str,
subtitle: str, annotate: bool = False):
min_tf: float = time_frames.min()
max_tf: float = time_frames.max()
tf_stddev: float = time_frames.std()
n: int = 100
dummy_x: np.ndarray = np.linspace(min_tf - tf_stddev, max_tf + tf_stddev, n)
plt.title(f'{name}\n({subtitle})')
plt.plot(time_frames, prices, '.',
dummy_x, model_coefficients(np.reshape(dummy_x, (-1, 1))), '-',
prediction[:, 0], prediction[:, 1], '*')
plt.xlabel('Time Frames')
plt.ylabel('Bells')
if annotate:
for index in range(0, len(prediction)):
time_frame = prediction[index][0]
prediction_point = prediction[index][1]
annotation_text: str = f'({time_frame}, {prediction_point:.1f})'
plt.annotate(annotation_text, (time_frame, prediction_point))
plt.show()
def get_option_print(option: str) -> str:
return f'[{option[0]}]{option[1:]}'
def predict_turnip_prices(args: argparse.Namespace) -> float:
"""
Predicts the stalk market prices for the next time frame with the data at the provided file path.
:param args: The arguments the user has put in.
:return: The prediction for turnip prices in the next time frame.
"""
df_raw: pd.DataFrame = get_data(args.filepath)
df: pd.DataFrame = organize_data(df_raw)
if args.add_data:
df = add_artificial_data(df, args.iterations)
time_frames = df['time_frame']
prices = df['price']
data_print = '\n'.join([f'{time_frames[i]:.5f}: {prices[i]:.5f}' for i in range(len(time_frames))])
print(f'Input data: \n{data_print}')
models = {'l': ('Linear Regression', predict_with_linear_model),
'p': ('Polyfit', predict_with_polyfit),
'g': ('Gaussian Features', predict_with_gaussian_features),
'r': ('Regularized Gaussian', predict_with_regulated_gaussian)}
if args.model is None:
print('How would you like to predict the next turnip price?')
for model_val in models.values():
print(f'{get_option_print(model_val[0])}')
model_input: str = input('> ')[0].lower()
else:
model_input: str = args.model
num_predictions: int = args.predictions
if model_input in models.keys():
prediction, model, subtitle = models[model_input][1](time_frames, prices, num_predictions + 1, args)
else:
print('Invalid model type.')
return 0.0
if model is not None:
plot(time_frames, prices, prediction, model, models[model_input][0], subtitle)
return prediction
if __name__ == '__main__':
arguments = parse_args()
next_turnip_prices = predict_turnip_prices(arguments)
print(f'Next Turnip Prices might be:\n{next_turnip_prices}')