A module for normalising text.
This module takes a text as input, and returns it in a fully normalised form, ie. expands everything that is not in a standard, readable format. Non-standard words (NSWs) are detected, classified and expanded. Examples of NSWs that are normalised include:
- Numbers - percentages, dates, currency amounts, ranges, telephone numbers.
- Abbreviations and acronyms.
- Web addresses and hashtags.
- Installation
- Usage
- Customise to your variety
- Input your own abbreviation dictionary
- Example
- Authors
- License
- Acknowledgements
To install the module (on Windows, Mac OS X, Linux, etc.) and to ensure that you have the latest version of pip and setuptools:
$ pip install --upgrade pip setuptools
$ pip install normalise
If pip
installation fails, you can try easy_install normalise
.
Your input text can be a list of words, or a string.
To normalise your text, use the normalise
function. This will return the text with NSWs replaced by their expansions:
text = ["On", "the", "28", "Apr.", "2010", ",", "Dr.", "Banks", "bought", "a", "chair", "for", "£35", "."]
normalise(text, verbose=True)
Out:
['On',
'the',
'twenty-eighth of',
'April',
'twenty ten',
',',
'Doctor',
'Banks',
'bought',
'a',
'chair',
'for',
'thirty five pounds',
'.']
verbose=True
displays the stages of the normalisation process, so you can monitor its progress. To turn this off, use verbose=False
.
If your input is a string, you can use our basic tokenizer. For best results, input your own custom tokenizer.
normalise(text, tokenizer=tokenize_basic, verbose=True)
In order to see a list of all NSWs in your text, along with their index, tags, and expansion, use the list_NSWs
function:
list_NSWs(text)
Out:
({3: ('Apr.', 'ALPHA', 'EXPN', 'April'),
6: ('Dr.', 'ALPHA', 'EXPN', 'Doctor')},
{2: ('28', 'NUMB', 'NORD', 'twenty-eighth of'),
4: ('2010', 'NUMB', 'NYER', 'twenty ten'),
12: ('£35', 'NUMB', 'MONEY', 'thirty five pounds')}
In order to customise normalisation to your variety of English, use variety="BrE"
for British English, or variety="AmE"
for American English:
text = ["On", "10/04", ",", "he", "went", "to", "the", "seaside", "."]
normalise(text, variety="BrE")
Out: ['On', 'the tenth of April', ',', 'he', 'went', 'to', 'the', 'seaside', '.']
normalise(text, variety="AmE")
Out: ['On', 'the fourth of October', ',', 'he', 'went', 'to', 'the', 'seaside', '.']
If a variety is not specified, our default is British English.
Although our system aims to be domain-general, users can input their own dictionary of abbreviations in order to tailor to a specific domain. This can be done using the keyword argument user_abbrevs={}
:
my_abbreviations = {"bdrm": "bedroom",
"KT": "kitchen",
"wndw": "window",
"ONO": "or near offer"}
text = ["4bdrm", "house", "for", "sale", ",", "£459k", "ONO"]
normalise(text, user_abbrevs=my_abbreviations)
Out:
['four bedroom',
'house',
'for',
'sale',
',',
'four hundred and fifty nine thousand pounds',
'or near offer']
A further example demonstrating the expansion of more types of NSW (including abbreviations, spelling mistakes, percentage ranges, currency):
text = ["On", "the", "13", "Feb.", "2007", ",", "Theresa", "May", "MP", "announced",
"on", "ITV", "News", "that", "the", "rate", "of", "childhod", "obesity", "had", "risen",
"from", "7.3-9.6%", "in", "just", "3", "years", ",", "costing", "the", "Gov.", "£20m", "."]
normalise(text, verbose=True)
Out:
['On',
'the',
'thirteenth of',
'February',
'two thousand and seven',
'Theresa',
'May',
'M P',
'announced',
'on',
'I T V',
'News',
'that',
'the',
'rate',
'of',
'childhood',
'obesity',
'had',
'risen',
'from',
'seven point three to nine point six percent',
'in',
'just',
'three',
'years',
',',
'costing',
'the',
'government',
'twenty million pounds',
'.']
- Elliot Ford - EFord36
- Emma Flint - emmaflint27
This project is licensed under the terms of the GNU General Public License version 3.0 or later.
Please see LICENSE.txt for more information.
This project builds on the work described in Sproat et al (2001).
We would like to thank Andrew Caines and Paula Buttery for supervising us during this project.