Skip to content

ETC5513demo/COVID19

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

77 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Coronavirus COVID-19 (2019-nCoV) Epidemic Datasets

The repository aims at unifying COVID-19 datasets across different sources in order to simplify the data acquisition process and the subsequent analysis. You are welcome to join and contribute by extending the number of supporting data sources as a joint effort against COVID-19.

The data are available to the end-user via the R package COVID19 or in csv format (see below or on Kaggle).

About

Goal

Provide the research community with a unified data hub by collecting worldwide fine-grained data merged with demographics, air pollution, and other exogenous variables helpful for a better understanding of COVID-19.

How

The data are collected with the R package COVID19. For R users, the COVID19 package is the recommended way to interact with the dataset. For non R users, the data are provided in csv format and regularly updated (see below or on Kaggle).

Join the mission

Whether or not you are an R user... take part in the data collection! Your contribution will be gratefully acknowledged. See how to contribute.

R Package COVID19

Simple, yet effective R package to acquire tidy format datasets of the 2019 Novel Coronavirus COVID-19 (2019-nCoV) epidemic. The data are downloaded in real-time, cleaned and matched with exogenous variables.

Quickstart

# Install COVID19
install.packages("COVID19")

# Load COVID19
require("COVID19")

Data Acquisition

# Diamond Princess 
d1 <- diamond()

# World
w1 <- world("country")       # data by country
w2 <- world("state")         # data by state

# US 
u1 <- us("country")          # data by country
u1 <- us("state")            # data by state

# Italy
i1 <- italy("country")       # data by country 
i2 <- italy("state")         # data by region 
i3 <- italy("city")          # data by city

# Switzerland 
s1 <- switzerland("country") # data by country
s2 <- switzerland("state")   # data by canton

# Liechtenstein 
l1 <- liechtenstein()        # data by country

CSV Data Files

CSV datasets of the 2019 Novel Coronavirus COVID-19 (2019-nCoV) epidemic. The files are generated with the R package COVID19 and updated daily. The following table shows the data coverage for each variable in each file.

deaths confirmed tests pop pop_14 pop_15_64 pop_65 pop_age pop_density pop_death_rate
cumulative number of COVID19 deaths cumulative number of COVID19 confirmed cases cumulative number of COVID19 tests total population population ages 0-14 (% of total population)* population ages 15-64 (% of total population)** population ages 65+ (% of total population) median age of population population density per km2 population mortality rate
World
World: country level
World: state level
US
US: country level
US: state level
Italy
Italy: country level
Italy: state level
Italy: city level
Switzerland
Switzerland: country level
Switzerland: state level
Liechtenstein
Liechtenstein: country level
Diamond Princess
Diamond Princess

* Switzerland: ages 0-19

** Switzerland: ages 20-64

Data Sources

The following sources are gratefully acknowledged for making the data available to the public.

deaths confirmed tests pop pop_14 pop_15_64 pop_65 pop_age pop_density pop_death_rate
cumulative number of COVID19 deaths cumulative number of COVID19 confirmed cases cumulative number of COVID19 tests total population population ages 0-14 (% of total population)* population ages 15-64 (% of total population)** population ages 65+ (% of total population) median age of population population density per km2 population mortality rate
World JHU CSSE JHU CSSE JHU CSSE World Bank Open Data (2018) World Bank Open Data (2018) World Bank Open Data (2018) World Bank Open Data (2018) World Factbook by CIA (2018) World Bank Open Data (2018) World Bank Open Data (2018)
US JHU CSSE JHU CSSE JHU CSSE JHU CSSE
Italy Ministero della Salute Ministero della Salute Ministero della Salute Istituto Nazionale di Statistica (2018) Istituto Nazionale di Statistica (2018) Istituto Nazionale di Statistica (2018) Istituto Nazionale di Statistica (2018) Istituto Nazionale di Statistica (2018) Istituto Nazionale di Statistica (2018) Istituto Nazionale di Statistica (2018)
Switzerland Open Government Data Open Government Data Open Government Data Swiss Federal Statistical Office (2018) Swiss Federal Statistical Office (2018) Swiss Federal Statistical Office (2018) Swiss Federal Statistical Office (2018) Swiss Federal Statistical Office (2018) Swiss Federal Statistical Office (2018) Swiss Federal Statistical Office (2018)
Liechtenstein Open Government Data Open Government Data Open Government Data
Diamond Princess JHU CSSE, Wikipedia JHU CSSE, Wikipedia Wikipedia Wikipedia

* Switzerland: ages 0-19

** Switzerland: ages 20-64

Acknowledgements

The following people have contributed to the data collection as a joint effort against COVID-19.

deaths confirmed tests pop pop_14 pop_15_64 pop_65 pop_age pop_density pop_death_rate
cumulative number of COVID19 deaths cumulative number of COVID19 confirmed cases cumulative number of COVID19 tests total population population ages 0-14 (% of total population)* population ages 15-64 (% of total population)** population ages 65+ (% of total population) median age of population population density per km2 population mortality rate
World
World: country level E.Guidotti E.Guidotti E.Guidotti E.Guidotti E.Guidotti E.Guidotti E.Guidotti E.Guidotti E.Guidotti E.Guidotti
World: state level E.Guidotti E.Guidotti E.Guidotti E.Guidotti E.Guidotti E.Guidotti E.Guidotti E.Guidotti E.Guidotti E.Guidotti
US
US: country level E.Guidotti E.Guidotti E.Guidotti E.Guidotti
US: state level E.Guidotti E.Guidotti E.Guidotti E.Guidotti
Italy
Italy: country level E.Guidotti E.Guidotti E.Guidotti E.Guidotti E.Guidotti E.Guidotti E.Guidotti E.Guidotti E.Guidotti E.Guidotti
Italy: state level E.Guidotti E.Guidotti E.Guidotti E.Guidotti E.Guidotti E.Guidotti E.Guidotti E.Guidotti E.Guidotti E.Guidotti
Italy: city level E.Guidotti E.Guidotti E.Guidotti E.Guidotti E.Guidotti E.Guidotti E.Guidotti E.Guidotti E.Guidotti E.Guidotti
Switzerland
Switzerland: country level E.Guidotti E.Guidotti E.Guidotti E.Guidotti E.Guidotti E.Guidotti E.Guidotti E.Guidotti E.Guidotti E.Guidotti
Switzerland: state level E.Guidotti E.Guidotti E.Guidotti E.Guidotti E.Guidotti E.Guidotti E.Guidotti E.Guidotti E.Guidotti E.Guidotti
Liechtenstein
Liechtenstein: country level E.Guidotti E.Guidotti E.Guidotti
Diamond Princess
Diamond Princess E.Guidotti E.Guidotti E.Guidotti E.Guidotti

* Switzerland: ages 0-19

** Switzerland: ages 20-64

Use Cases

  • Monitoring the advancement of the COVID–19 contagion in the regions of Italy (code)

Citation

Emanuele Guidotti, “Coronavirus COVID-19 (2019-nCoV) Epidemic Datasets.” Kaggle, doi: 10.34740/KAGGLE/DS/574488.

About

Coronavirus COVID-19 (2019-nCoV) Epidemic Datasets

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • R 100.0%