forked from dtecho/windsurf-project
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpersonality_system.py
244 lines (212 loc) · 9.18 KB
/
personality_system.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
import numpy as np
from typing import Dict, List, Optional, Tuple
import logging
from pathlib import Path
import json
import datetime
from dataclasses import dataclass, field
import time
@dataclass
class PersonalityVector:
curiosity: float = 0.8
adaptability: float = 0.9
persistence: float = 0.7
creativity: float = 0.8
analytical: float = 0.85
social: float = 0.6
confidence: float = 0.7
def to_array(self) -> np.ndarray:
return np.array([
self.curiosity,
self.adaptability,
self.persistence,
self.creativity,
self.analytical,
self.social,
self.confidence
])
@classmethod
def from_array(cls, arr: np.ndarray) -> 'PersonalityVector':
return cls(
curiosity=float(arr[0]),
adaptability=float(arr[1]),
persistence=float(arr[2]),
creativity=float(arr[3]),
analytical=float(arr[4]),
social=float(arr[5]),
confidence=float(arr[6])
)
@dataclass
class EmotionalState:
valence: float = 0.0 # Positive vs negative
arousal: float = 0.0 # High vs low energy
dominance: float = 0.0 # In control vs controlled
def to_array(self) -> np.ndarray:
return np.array([self.valence, self.arousal, self.dominance])
@dataclass
class Experience:
type: str
description: str
impact: float
context: Dict
timestamp: float = field(default_factory=lambda: datetime.datetime.now().timestamp())
class PersonalitySystem:
def __init__(self):
self.logger = logging.getLogger(__name__)
self.personality = PersonalityVector()
self.emotional_state = EmotionalState()
self.experience_history: List[Experience] = []
self.adaptation_rate = 0.3
self.echo_dir = Path.home() / '.deep_tree_echo'
self.personality_dir = self.echo_dir / 'personality'
self.personality_dir.mkdir(parents=True, exist_ok=True)
self.personality_path = self.personality_dir / 'personality_state.json'
self.activity_file = self.personality_dir / 'activity.json'
self.activities = []
self._load_state()
self._load_activities()
def _load_state(self):
"""Load personality state from disk"""
try:
if self.personality_path.exists():
with open(self.personality_path) as f:
data = json.load(f)
self.personality = PersonalityVector(**data.get('personality', {}))
self.emotional_state = EmotionalState(**data.get('emotional_state', {}))
# Load experiences
for exp_data in data.get('experiences', []):
self.experience_history.append(Experience(**exp_data))
except Exception as e:
self.logger.error(f"Error loading personality state: {str(e)}")
def _load_activities(self):
"""Load existing activities"""
if self.activity_file.exists():
try:
with open(self.activity_file) as f:
self.activities = json.load(f)
except:
self.activities = []
def _save_activities(self):
"""Save activities to file"""
with open(self.activity_file, 'w') as f:
json.dump(self.activities[-1000:], f)
def _log_activity(self, description: str, data: Optional[Dict] = None):
"""Log a personality activity"""
activity = {
'time': time.time(),
'description': description,
'data': data or {}
}
self.activities.append(activity)
self._save_activities()
def save_state(self):
"""Save current personality state to disk"""
try:
data = {
'personality': self.personality.__dict__,
'emotional_state': self.emotional_state.__dict__,
'experiences': [exp.__dict__ for exp in self.experience_history[-1000:]] # Keep last 1000
}
with open(self.personality_path, 'w') as f:
json.dump(data, f, indent=2)
except Exception as e:
self.logger.error(f"Error saving personality state: {str(e)}")
def process_experience(self, experience: Experience):
"""Process new experience and update personality"""
self._log_activity(
"Processing experience",
{
'type': experience.type,
'description': experience.description,
'impact': experience.impact
}
)
self.experience_history.append(experience)
# Update emotional state
self._update_emotional_state(experience)
# Update personality traits
self._update_personality_traits(experience)
# Save state after significant changes
if abs(experience.impact) > 0.5:
self.save_state()
def get_response_modulation(self, context: Dict) -> Dict[str, float]:
"""Get personality-based response modulation factors"""
self._log_activity(
"Calculating response modulation",
{'context': context}
)
modulation = {
'creativity_factor': self._get_creativity_factor(context),
'analytical_factor': self._get_analytical_factor(context),
'social_factor': self._get_social_factor(context),
'confidence_factor': self._get_confidence_factor(context)
}
return modulation
def _update_emotional_state(self, experience: Experience):
"""Update emotional state based on experience"""
# Update valence (positive/negative)
self.emotional_state.valence = (
0.7 * self.emotional_state.valence +
0.3 * np.tanh(experience.impact)
)
# Update arousal (energy level)
arousal_factor = abs(experience.impact) * 2 - 1
self.emotional_state.arousal = (
0.8 * self.emotional_state.arousal +
0.2 * arousal_factor
)
# Update dominance (control)
dominance_delta = 0.1 * np.sign(experience.impact)
self.emotional_state.dominance = np.clip(
self.emotional_state.dominance + dominance_delta,
-1, 1
)
def _update_personality_traits(self, experience: Experience):
"""Update personality traits based on experience"""
# Get personality vector
vec = self.personality.to_array()
# Create update mask based on experience type
update_mask = self._get_update_mask(experience.type)
# Calculate update based on experience impact
update = np.zeros_like(vec)
update += experience.impact * update_mask
# Apply update with adaptation rate
vec = vec * (1 - self.adaptation_rate) + update * self.adaptation_rate
# Ensure values stay in valid range
vec = np.clip(vec, 0.1, 1.0)
# Update personality
self.personality = PersonalityVector.from_array(vec)
def _get_update_mask(self, experience_type: str) -> np.ndarray:
"""Get update mask for different experience types"""
masks = {
'learning': np.array([1.0, 0.5, 0.3, 0.4, 0.8, 0.2, 0.4]),
'social': np.array([0.3, 0.6, 0.2, 0.4, 0.2, 1.0, 0.5]),
'challenge': np.array([0.4, 0.8, 1.0, 0.5, 0.6, 0.3, 0.7]),
'creative': np.array([0.6, 0.4, 0.3, 1.0, 0.5, 0.4, 0.5]),
'analytical': np.array([0.5, 0.3, 0.4, 0.3, 1.0, 0.2, 0.6])
}
return masks.get(experience_type, np.ones(7) * 0.3)
def _get_creativity_factor(self, context: Dict) -> float:
"""Calculate creativity factor for responses"""
base = self.personality.creativity
emotional_mod = 0.2 * (self.emotional_state.valence + 1) # Map [-1,1] to [0,0.4]
context_mod = 0.1 if context.get('requires_creativity', False) else 0
return base + emotional_mod + context_mod
def _get_analytical_factor(self, context: Dict) -> float:
"""Calculate analytical factor for responses"""
base = self.personality.analytical
emotional_mod = -0.1 * abs(self.emotional_state.valence) # High emotions reduce analytical
context_mod = 0.2 if context.get('requires_analysis', False) else 0
return base + emotional_mod + context_mod
def _get_social_factor(self, context: Dict) -> float:
"""Calculate social factor for responses"""
base = self.personality.social
emotional_mod = 0.15 * (self.emotional_state.valence + 1)
context_mod = 0.2 if context.get('social_interaction', False) else 0
return base + emotional_mod + context_mod
def _get_confidence_factor(self, context: Dict) -> float:
"""Calculate confidence factor for responses"""
base = self.personality.confidence
emotional_mod = 0.1 * self.emotional_state.dominance
context_mod = 0.1 if context.get('familiar_topic', False) else -0.1
return base + emotional_mod + context_mod