forked from alibaba/MNN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathInitializer.cpp
210 lines (181 loc) · 5.97 KB
/
Initializer.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
//
// Initializer.cpp
// MNN
//
// Created by MNN on 2019/11/28.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include "Initializer.hpp"
#include <MNN/expr/ExprCreator.hpp>
#include <cmath>
#include <vector>
#include "Distributions.hpp"
#include "RandomGenerator.hpp"
namespace MNN {
namespace Express {
Express::VARP Initializer::createConstVar(Express::INTS dim, Express::Dimensionformat format) {
auto res = Express::_Input(dim, format, halide_type_of<float>());
this->onExecute(res);
res.fix(Express::VARP::CONSTANT);
return res;
}
class ConstantInitializer : public Initializer {
public:
ConstantInitializer(float value) : mConstant(value) {
}
virtual void onExecute(Express::VARP p) override {
const int count = p->getInfo()->size;
MNN_ASSERT(count > 0);
auto ptr = p->writeMap<float>();
for (int i = 0; i < count; i++) {
ptr[i] = mConstant;
}
}
private:
float mConstant;
};
Initializer* Initializer::constValue(float value) {
return new ConstantInitializer(value);
}
class UniformInitializer : public Initializer {
public:
UniformInitializer(float min = 0, float max = 1) {
mMin = min;
mMax = max;
}
virtual void onExecute(Express::VARP p) override {
const int count = p->getInfo()->size;
MNN_ASSERT(count > 0);
Distributions::uniform(count, mMin, mMax, p->writeMap<float>(), RandomGenerator::generator());
}
private:
float mMin;
float mMax;
};
Initializer* Initializer::uniform(float minValue, float maxValue) {
return new UniformInitializer(minValue, maxValue);
}
class XavierInitializer : public Initializer {
public:
XavierInitializer(VarianceNorm norm = FANIN) {
mNorm = norm;
}
virtual void onExecute(Express::VARP p) override {
const int count = p->getInfo()->size;
MNN_ASSERT(count > 0);
const std::vector<int> dims = p->getInfo()->dim;
// referenced from Caffe
// https://github.com/BVLC/caffe/blob/master/include/caffe/filler.hpp
int fanIn = count / dims[0];
int fanOut = dims.size() > 1 ? count / dims[1] : count;
float n = fanIn; // default: FANIN
if (mNorm == VarianceNorm::AVERAGE) {
n = (fanIn + fanOut) / 2.0f;
} else if (mNorm == VarianceNorm::FANOUT) {
n = fanOut;
}
float scale = sqrtf(3.0f / n);
Distributions::uniform(count, -scale, scale, p->writeMap<float>(), RandomGenerator::generator());
}
private:
VarianceNorm mNorm;
};
Initializer* Initializer::xavier(VarianceNorm norm) {
return new XavierInitializer(norm);
}
class GaussianInitializer : public Initializer {
public:
GaussianInitializer(float mean = 0, float std = 1) {
mMean = mean;
mStd = std;
}
virtual void onExecute(Express::VARP p) override {
const int count = p->getInfo()->size;
MNN_ASSERT(count > 0);
Distributions::gaussian(count, mMean, mStd, p->writeMap<float>(), RandomGenerator::generator());
}
private:
float mMean;
float mStd;
};
Initializer* Initializer::gauss(float mean, float std) {
return new GaussianInitializer(mean, std);
}
class MSRAInitializer : public Initializer {
public:
MSRAInitializer(VarianceNorm norm = FANIN) {
mNorm = norm;
}
virtual void onExecute(Express::VARP p) override {
const int count = p->getInfo()->size;
MNN_ASSERT(count > 0);
const std::vector<int> dims = p->getInfo()->dim;
// referenced from Caffe
// https://github.com/BVLC/caffe/blob/master/include/caffe/filler.hpp
int fanIn = count / dims[0];
int fanOut = dims.size() > 1 ? count / dims[1] : count;
float n = fanIn; // default: FANIN
if (mNorm == VarianceNorm::AVERAGE) {
n = (fanIn + fanOut) / 2.0f;
} else if (mNorm == VarianceNorm::FANOUT) {
n = fanOut;
}
float std = sqrtf(2.0f / n);
Distributions::gaussian(count, 0.0f, std, p->writeMap<float>(), RandomGenerator::generator());
}
private:
VarianceNorm mNorm;
};
Initializer* Initializer::MSRA(VarianceNorm norm) {
return new MSRAInitializer(norm);
}
class BilinearInitializer : public Initializer {
public:
BilinearInitializer() = default;
virtual void onExecute(Express::VARP p) override {
const int count = p->getInfo()->size;
MNN_ASSERT(count > 0);
const std::vector<int> dims = p->getInfo()->dim;
MNN_ASSERT(dims.size() == 4);
MNN_ASSERT(dims[2] == dims[3]); // NCHW, H == W
// referenced from Caffe
// https://github.com/BVLC/caffe/blob/master/include/caffe/filler.hpp
int f = ceilf(dims[3] / 2.0f);
float c = (dims[3] - 1) / (2.0f * f);
auto ptr = p->writeMap<float>();
for (int i = 0; i < count; i++) {
float x = i % dims[3];
float y = (i / dims[3]) % dims[2];
ptr[i] = (1 - std::fabs(x / f - c)) * (1 - std::fabs(y / f - c));
}
}
};
Initializer* Initializer::bilinear() {
return new BilinearInitializer();
}
class PositiveUnitball : public Initializer {
public:
PositiveUnitball() = default;
virtual void onExecute(Express::VARP p) override {
const int count = p->getInfo()->size;
MNN_ASSERT(count > 0);
const std::vector<int> dims = p->getInfo()->dim;
auto ptr = p->writeMap<float>();
Distributions::uniform(count, 0, 1, ptr, RandomGenerator::generator());
int dim = count / dims[0];
for (int i = 0; i < dims[0]; i++) {
float sum = 0;
for (int j = 0; j < dim; j++) {
sum += ptr[i * dim + j];
}
for (int j = 0; j < dim; j++) {
ptr[i * dim + j] = ptr[i * dim + j] / sum;
}
}
}
};
Initializer* Initializer::positiveUnitball() {
return new PositiveUnitball();
}
} // namespace Express
} // namespace MNN