forked from Thinklab-SJTU/EDA-AI
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathEvalMetrics.py
110 lines (104 loc) · 4.04 KB
/
EvalMetrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
##
# @file EvalMetrics.py
# @author Yibo Lin
# @date Sep 2018
# @brief Evaluation metrics
#
import time
import torch
import pdb
class EvalMetrics (object):
"""
@brief evaluation metrics at one step
"""
def __init__(self, iteration=None, detailed_step=None):
"""
@brief initialization
@param iteration optimization step
"""
self.iteration = iteration
self.detailed_step = detailed_step
self.objective = None
self.wirelength = None
self.density = None
self.density_weight = None
self.hpwl = None
self.rmst_wl = None
self.overflow = None
self.route_utilization = None
self.pin_utilization = None
self.max_density = None
self.gamma = None
self.eval_time = None
def __str__(self):
"""
@brief convert to string
"""
content = ""
if self.iteration is not None:
content = "iteration %4d" % (self.iteration)
if self.detailed_step is not None:
content += ", (%4d, %2d, %2d)" % (self.detailed_step[0], self.detailed_step[1], self.detailed_step[2])
if self.objective is not None:
content += ", Obj %.6E" % (self.objective)
if self.wirelength is not None:
content += ", WL %.3E" % (self.wirelength)
if self.density is not None:
content += ", Density %.3E" % (self.density)
if self.density_weight is not None:
content += ", DensityWeight %.6E" % (self.density_weight)
if self.hpwl is not None:
content += ", HPWL %.6E" % (self.hpwl)
if self.rmst_wl is not None:
content += ", RMSTWL %.3E" % (self.rmst_wl)
if self.overflow is not None:
content += ", Overflow %.6E" % (self.overflow)
if self.max_density is not None:
content += ", MaxDensity %.3E" % (self.max_density)
if self.route_utilization is not None:
content += ", RouteOverflow %.6E" % (self.route_utilization)
if self.pin_utilization is not None:
content += ", PinOverflow %.6E" % (self.pin_utilization)
if self.gamma is not None:
content += ", gamma %.6E" % (self.gamma)
if self.eval_time is not None:
content += ", time %.3fms" % (self.eval_time*1000)
return content
def __repr__(self):
"""
@brief print
"""
return self.__str__()
def evaluate(self, placedb, ops, var):
"""
@brief evaluate metrics
@param placedb placement database
@param ops a list of ops
@param var variables
"""
tt = time.time()
with torch.no_grad():
if "objective" in ops:
self.objective = ops["objective"](var).data
if "wirelength" in ops:
self.wirelength = ops["wirelength"](var).data
if "density" in ops:
self.density = ops["density"](var).data
if "hpwl" in ops:
self.hpwl = ops["hpwl"](var).data
if "rmst_wls" in ops:
rmst_wls = ops["rmst_wls"](var)
self.rmst_wl = rmst_wls.sum().data
if "overflow" in ops:
overflow, max_density = ops["overflow"](var)
self.overflow = overflow.data / placedb.total_movable_node_area
self.max_density = max_density.data
if "route_utilization" in ops:
route_utilization_map = ops["route_utilization"](var)
route_utilization_map_sum = route_utilization_map.sum()
self.route_utilization = route_utilization_map.sub_(1).clamp_(min=0).sum() / route_utilization_map_sum
if "pin_utilization" in ops:
pin_utilization_map = ops["pin_utilization"](var)
pin_utilization_map_sum = pin_utilization_map.sum()
self.pin_utilization = pin_utilization_map.sub_(1).clamp_(min=0).sum() / pin_utilization_map_sum
self.eval_time = time.time()-tt