forked from Thinklab-SJTU/EDA-AI
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathNesterovAcceleratedGradientOptimizer.py
160 lines (142 loc) · 6.74 KB
/
NesterovAcceleratedGradientOptimizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
##
# @file NesterovAcceleratedGradientOptimizer.py
# @author Yibo Lin
# @date Aug 2018
# @brief Nesterov's accelerated gradient method proposed by e-place.
#
import os
import sys
import time
import pickle
import numpy as np
import torch
from torch.optim.optimizer import Optimizer, required
import torch.nn as nn
import pdb
class NesterovAcceleratedGradientOptimizer(Optimizer):
"""
@brief Follow the Nesterov's implementation of e-place algorithm 2
http://cseweb.ucsd.edu/~jlu/papers/eplace-todaes14/paper.pdf
"""
def __init__(self, params, lr=required, obj_and_grad_fn=required, constraint_fn=None):
"""
@brief initialization
@param params variable to optimize
@param lr learning rate
@param obj_and_grad_fn a callable function to get objective and gradient
@param constraint_fn a callable function to force variables to satisfy all the constraints
"""
if lr is not required and lr < 0.0:
raise ValueError("Invalid learning rate: {}".format(lr))
# u_k is major solution
# v_k is reference solution
# obj_k is the objective at v_k
# a_k is optimization parameter
# alpha_k is the step size
# v_k_1 is previous reference solution
# g_k_1 is gradient to v_k_1
# obj_k_1 is the objective at v_k_1
defaults = dict(lr=lr,
u_k=[], v_k=[], g_k=[], obj_k=[], a_k=[], alpha_k=[],
v_k_1=[], g_k_1=[], obj_k_1=[],
v_kp1 = [None],
obj_eval_count=0)
super(NesterovAcceleratedGradientOptimizer, self).__init__(params, defaults)
self.obj_and_grad_fn = obj_and_grad_fn
self.constraint_fn = constraint_fn
# I do not know how to get generator's length
if len(self.param_groups) != 1:
raise ValueError("Only parameters with single tensor is supported")
def __setstate__(self, state):
super(NesterovAcceleratedGradientOptimizer, self).__setstate__(state)
def step(self, closure=None):
"""
@brief Performs a single optimization step.
@param closure A callable closure function that reevaluates the model and returns the loss.
"""
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
obj_and_grad_fn = self.obj_and_grad_fn
constraint_fn = self.constraint_fn
for i, p in enumerate(group['params']):
if p.grad is None:
continue
if not group['u_k']:
group['u_k'].append(p.data.clone())
# directly use p as v_k to save memory
#group['v_k'].append(torch.autograd.Variable(p.data, requires_grad=True))
group['v_k'].append(p)
obj, grad = obj_and_grad_fn(group['v_k'][i])
group['g_k'].append(grad.data.clone()) # must clone
group['obj_k'].append(obj.data.clone())
u_k = group['u_k'][i]
v_k = group['v_k'][i]
g_k = group['g_k'][i]
obj_k = group['obj_k'][i]
if not group['a_k']:
group['a_k'].append(torch.ones(1, dtype=g_k.dtype, device=g_k.device))
group['v_k_1'].append(torch.autograd.Variable(torch.zeros_like(v_k), requires_grad=True))
group['v_k_1'][i].data.copy_(group['v_k'][i]-group['lr']*g_k)
obj, grad = obj_and_grad_fn(group['v_k_1'][i])
group['g_k_1'].append(grad.data)
group['obj_k_1'].append(obj.data.clone())
a_k = group['a_k'][i]
v_k_1 = group['v_k_1'][i]
g_k_1 = group['g_k_1'][i]
obj_k_1 = group['obj_k_1'][i]
if not group['alpha_k']:
group['alpha_k'].append((v_k-v_k_1).norm(p=2) / (g_k-g_k_1).norm(p=2))
alpha_k = group['alpha_k'][i]
if group['v_kp1'][i] is None:
group['v_kp1'][i] = torch.autograd.Variable(torch.zeros_like(v_k), requires_grad=True)
v_kp1 = group['v_kp1'][i]
# line search with alpha_k as hint
a_kp1 = (1 + (4*a_k.pow(2)+1).sqrt()) / 2
coef = (a_k-1) / a_kp1
alpha_kp1 = 0
backtrack_cnt = 0
max_backtrack_cnt = 10
#ttt = time.time()
while True:
#with torch.autograd.profiler.profile(use_cuda=True) as prof:
u_kp1 = v_k - alpha_k*g_k
#constraint_fn(u_kp1)
v_kp1.data.copy_(u_kp1 + coef*(u_kp1-u_k))
# make sure v_kp1 subjects to constraints
# g_kp1 must correspond to v_kp1
constraint_fn(v_kp1)
f_kp1, g_kp1 = obj_and_grad_fn(v_kp1)
#tt = time.time()
alpha_kp1 = torch.sqrt(torch.sum((v_kp1.data-v_k.data)**2) / torch.sum((g_kp1.data-g_k.data)**2))
# alpha_kp1 = torch.dist(v_kp1.data, v_k.data, p=2) / torch.dist(g_kp1.data, g_k.data, p=2)
backtrack_cnt += 1
group['obj_eval_count'] += 1
#logging.debug("\t\talpha_kp1 %.3f ms" % ((time.time()-tt)*1000))
#torch.cuda.synchronize()
#logging.debug(prof)
#logging.debug("alpha_kp1 = %g, line_search_count = %d, obj_eval_count = %d" % (alpha_kp1, backtrack_cnt, group['obj_eval_count']))
#logging.debug("|g_k| = %.6E, |g_kp1| = %.6E" % (g_k.norm(p=2), g_kp1.norm(p=2)))
if alpha_kp1 > 0.95*alpha_k or backtrack_cnt >= max_backtrack_cnt:
alpha_k.data.copy_(alpha_kp1.data)
break
else:
alpha_k.data.copy_(alpha_kp1.data)
#if v_k.is_cuda:
# torch.cuda.synchronize()
#logging.debug("\tline search %.3f ms" % ((time.time()-ttt)*1000))
v_k_1.data.copy_(v_k.data)
g_k_1.data.copy_(g_k.data)
obj_k_1.data.copy_(obj_k.data)
u_k.data.copy_(u_kp1.data)
v_k.data.copy_(v_kp1.data)
g_k.data.copy_(g_kp1.data)
obj_k.data.copy_(f_kp1.data)
a_k.data.copy_(a_kp1.data)
# although the solution should be u_k
# we need the gradient of v_k
# the update of density weight also requires v_k
# I do not know how to copy u_k back to p when exit yet
#p.data.copy_(v_k.data)
return loss