forked from Strali/toxic-text
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
563 lines (453 loc) · 20 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
import tensorflow as tf
from keras import backend as K
from keras.callbacks import Callback, EarlyStopping, ModelCheckpoint, TensorBoard
from scipy.special import expit, logit
from sklearn.metrics import log_loss, roc_auc_score
from tqdm import tqdm
class CyclicLR(Callback):
"""This callback implements a cyclical learning rate policy (CLR).
The method cycles the learning rate between two boundaries with
some constant frequency, as detailed in this paper (https://arxiv.org/abs/1506.01186).
The amplitude of the cycle can be scaled on a per-iteration or
per-cycle basis.
This class has three built-in policies, as put forth in the paper.
"triangular":
A basic triangular cycle w/ no amplitude scaling.
"triangular2":
A basic triangular cycle that scales initial amplitude by half each cycle.
"exp_range":
A cycle that scales initial amplitude by gamma**(cycle iterations) at each
cycle iteration.
For more detail, please see paper.
# Example
```python
clr = CyclicLR(base_lr=0.001, max_lr=0.006,
step_size=2000., mode='triangular')
model.fit(X_train, Y_train, callbacks=[clr])
```
Class also supports custom scaling functions:
```python
clr_fn = lambda x: 0.5*(1+np.sin(x*np.pi/2.))
clr = CyclicLR(base_lr=0.001, max_lr=0.006,
step_size=2000., scale_fn=clr_fn,
scale_mode='cycle')
model.fit(X_train, Y_train, callbacks=[clr])
```
# Arguments
base_lr: initial learning rate which is the
lower boundary in the cycle.
max_lr: upper boundary in the cycle. Functionally,
it defines the cycle amplitude (max_lr - base_lr).
The lr at any cycle is the sum of base_lr
and some scaling of the amplitude; therefore
max_lr may not actually be reached depending on
scaling function.
step_size: number of training iterations per
half cycle. Authors suggest setting step_size
2-8 x training iterations in epoch.
mode: one of {triangular, triangular2, exp_range}.
Default 'triangular'.
Values correspond to policies detailed above.
If scale_fn is not None, this argument is ignored.
gamma: constant in 'exp_range' scaling function:
gamma**(cycle iterations)
scale_fn: Custom scaling policy defined by a single
argument lambda function, where
0 <= scale_fn(x) <= 1 for all x >= 0.
mode paramater is ignored
scale_mode: {'cycle', 'iterations'}.
Defines whether scale_fn is evaluated on
cycle number or cycle iterations (training
iterations since start of cycle). Default is 'cycle'.
"""
def __init__(self, base_lr=0.001, max_lr=0.006, step_size=2000., mode='triangular',
gamma=1., scale_fn=None, scale_mode='cycle'):
super(CyclicLR, self).__init__()
self.base_lr = base_lr
self.max_lr = max_lr
self.step_size = step_size
self.mode = mode
self.gamma = gamma
if scale_fn is None:
if self.mode == 'triangular':
self.scale_fn = lambda x: 1.
self.scale_mode = 'cycle'
elif self.mode == 'triangular2':
self.scale_fn = lambda x: 1 / (2.**(x - 1))
self.scale_mode = 'cycle'
elif self.mode == 'exp_range':
self.scale_fn = lambda x: gamma**(x)
self.scale_mode = 'iterations'
else:
self.scale_fn = scale_fn
self.scale_mode = scale_mode
self.clr_iterations = 0.
self.trn_iterations = 0.
self.history = {}
self._reset()
def _reset(self, new_base_lr=None, new_max_lr=None,
new_step_size=None):
"""Resets cycle iterations.
Optional boundary/step size adjustment.
"""
if new_base_lr is not None:
self.base_lr = new_base_lr
if new_max_lr is not None:
self.max_lr = new_max_lr
if new_step_size is not None:
self.step_size = new_step_size
self.clr_iterations = 0.
def clr(self):
cycle = np.floor(1 + self.clr_iterations / (2 * self.step_size))
x = np.abs(self.clr_iterations / self.step_size - 2 * cycle + 1)
if self.scale_mode == 'cycle':
return self.base_lr + (self.max_lr - self.base_lr) * \
np.maximum(0, (1 - x)) * self.scale_fn(cycle)
else:
return self.base_lr + (self.max_lr - self.base_lr) * \
np.maximum(0, (1 - x)) * self.scale_fn(self.clr_iterations)
def on_train_begin(self, logs={}):
logs = logs or {}
if self.clr_iterations == 0:
K.set_value(self.model.optimizer.lr, self.base_lr)
else:
K.set_value(self.model.optimizer.lr, self.clr())
def on_batch_end(self, epoch, logs=None):
logs = logs or {}
self.trn_iterations += 1
self.clr_iterations += 1
K.set_value(self.model.optimizer.lr, self.clr())
self.history.setdefault('lr', []).append(K.get_value(self.model.optimizer.lr))
self.history.setdefault('iterations', []).append(self.trn_iterations)
for k, v in logs.items():
self.history.setdefault(k, []).append(v)
class RocAucEvaluation(Callback):
"""Evaluate ROC AUC on validation data at epoch end.
Parameters
----------
interval : Number of epochs between ROC evaluations, default 1.
"""
def __init__(self, interval=1):
super(Callback, self).__init__()
self.interval = interval
self.roc = 0.0
def on_epoch_end(self, epoch, logs={}):
if epoch % self.interval == 0:
if len(self.validation_data) == 5:
y_pred = self.model.predict([self.validation_data[0], self.validation_data[1]],
verbose=0)
score = roc_auc_score(self.validation_data[2], y_pred)
else:
y_pred = self.model.predict(self.validation_data[0], verbose=0)
score = roc_auc_score(self.validation_data[1], y_pred)
print('ROC AUC score on validation data - epoch: {:d} - ROC AUC: {:.6f}'
.format(epoch + 1, score))
if score > self.roc:
print('Best ROC score increased from {:.6f} to {:.6f}\n'
.format(self.roc, score))
self.roc = score
else:
print('ROC score did not improve\n')
class TrainValTensorBoard(TensorBoard):
"""Enhance Tensorboard callback to display training and validation
metrics on a single graph for easy comparison.
Parameters
----------
log_dir : String specifying base path to log directory.
**kwargs : Keyword arguments to TensorBoard callback.
"""
def __init__(self, log_dir='./logs', **kwargs):
# Make the original `TensorBoard` log to a subdirectory 'training'
training_log_dir = log_dir + '/training'
super(TrainValTensorBoard, self).__init__(training_log_dir, **kwargs)
# Log the validation metrics to a separate subdirectory
self.val_log_dir = log_dir + '/validation'
def set_model(self, model):
# Setup writer for validation metrics
self.val_writer = tf.summary.FileWriter(self.val_log_dir)
super(TrainValTensorBoard, self).set_model(model)
def on_epoch_end(self, epoch, logs=None):
# Pop the validation logs and handle them separately with
# `self.val_writer`. Also rename the keys so that they can
# be plotted on the same figure with the training metrics
logs = logs or {}
val_logs = {k.replace('val_', ''): v for k, v in logs.items() if k.startswith('val_')}
for name, value in val_logs.items():
summary = tf.Summary()
summary_value = summary.value.add()
summary_value.simple_value = value.item()
summary_value.tag = name
self.val_writer.add_summary(summary, epoch)
self.val_writer.flush()
# Pass the remaining logs to `TensorBoard.on_epoch_end`
logs = {k: v for k, v in logs.items() if not k.startswith('val_')}
super(TrainValTensorBoard, self).on_epoch_end(epoch, logs)
def on_train_end(self, logs=None):
super(TrainValTensorBoard, self).on_train_end(logs)
self.val_writer.close()
def get_callbacks(*callback_params):
"""Return a list of Keras callbacks.
NOTE: Assumes callback parameters are given in the order
"CyclicLR", "ModelCheckpoint", "EarlyStopping", "TensorBoard".
"""
callback_list = []
CLR_callback = CyclicLR(base_lr=0.0001, max_lr=0.005, step_size=30000,
mode='triangular')
callback_list.append(CLR_callback)
CP_callback = ModelCheckpoint(**callback_params[1])
callback_list.append(CP_callback)
ES_callback = EarlyStopping(**callback_params[2])
callback_list.append(ES_callback)
if len(callback_params) == 3:
TB_callback = TrainValTensorBoard(**callback_params[3])
callback_list.append(TB_callback)
ROC_callback = RocAucEvaluation(interval=1)
callback_list.append(ROC_callback)
return callback_list
def get_embeddings(word_index, embedding_dim=300,
use_ft_embeddings=False, use_skipgram=True):
"""
Return pre-trained word embeddings for words in the input corpus. OOV
words will be encoded using a N(0, 1) random distribution.
Parameters
----------
word_index : List of all tokens (words) in the corpus.
embedding_dim : (Scalar) dimension of the embedding space.
use_ft : Boolean, whether to use word vectors pretrained using fasttext.
use_skipgram : Boolean, whether to use fasttext skipgram word vectors.
If false, cbow model word vectors will be used instead.
NOTE: GloVe embeddings reqiure embedding_dim==300. Fasttext embeddings
can have embedding_dim==100 or embedding_dim==300
Returns
-------
embedding_matrix : A (num_words + 1, embedding_dim) matrix of word embeddings
"""
embeddings_index = {}
if use_ft_embeddings:
if use_skipgram:
print('Using fasttext skipgram embeddings...')
embedding_file = './data/word_embeddings/ft_skipgram_300d.txt'
else:
print('Using fasttext cbow embeddings...')
embedding_file = './data/word_embeddings/ft_cbow_300d.txt'
else:
print('Using GloVe embeddings...')
assert embedding_dim == 300
embedding_file = './data/word_embeddings/glove.840B.300d.txt'
print('Creating word embeddings from file %s' % embedding_file)
f = open(embedding_file, encoding='utf-8')
n = 1
for line in tqdm(f):
try:
values = line.split()
word = values[0]
coefs = np.asarray(values[1:], dtype='float32')
embeddings_index[word] = coefs
except ValueError as e:
print('Error on line', n, ': ', e)
n += 1
f.close()
embedding_matrix = np.zeros((len(word_index) + 1, embedding_dim))
oov_count = 0
for word, i in word_index.items():
embedding_vector = embeddings_index.get(word)
if embedding_vector is not None:
embedding_matrix[i] = embedding_vector
else:
oov_count += 1
embedding_matrix[i] = np.random.normal(0, 1, embedding_dim)
print('Loaded embedding matrix')
print('%i (%.2f%%) oov words found in data\n' %
(oov_count, 100 * (oov_count / len(word_index))))
return embedding_matrix
def get_mean_log_loss(true, pred, eps=1e-15):
"""Return log loss of input"""
return log_loss(true, pred, eps)
def get_sentence(index, classes, comments):
"""Return the sentence and corresponding labels at index position"""
sentence_text = comments['comment_text'].values[index]
sentence_label = comments[classes].values[index]
return sentence_text, sentence_label
def get_train_comments():
"""Return all raw comments in training data"""
train = pd.read_csv('./data/train.csv')
return train['comment_text'].fillna('MISSING').values
def get_toxicity_classes(preds, threshold=0.6, classes=None):
"""Print detected classes of toxicity in a sentence based on threshold.
Parameters
----------
preds : Probabilities of each type of toxicity
threshold : Threshold probability for when a type of toxicity is present
classes : List of all toxicity types
"""
if classes is None:
classes = ['toxic', 'severe_toxic', 'obscene',
'threat', 'insult', 'identity_hate']
if sum(preds > threshold) > 0:
present_classes = [classes[i] for i in range(len(classes))
if preds[i] > threshold]
return present_classes
else:
return ['not_toxic']
def make_aux_submission(model, X_test, X_aux,
class_list, weight_path, output_path,
post_process=False):
"""
Predict on test data using supplied (trained) model and create Kaggle
submission file using predictions.
Parameters
----------
model : A trained Keras model.
X_test : Array of (preprocessed) test data.
X_aux : Array of auxilliary inputs (i.e. engineered features)
class_list : 1-D array of all classes in output.
weight_path : Path to model weights.
output_path : Path to which submission is saved.
"""
model.load_weights(weight_path)
y_test = model.predict([X_test, X_aux])
if post_process:
y_test = expit(logit(y_test) - 0.5)
sample_submission = pd.read_csv('./data/sample_submission.csv')
sample_submission[class_list] = y_test
sample_submission.to_csv(output_path, index=False)
def make_submission(model, X_test, class_list, weight_path, output_path):
"""
Predict on test data using supplied (trained) model and create Kaggle
submission file using predictions.
Parameters
----------
model : A trained Keras model.
X_test : Array of (preprocessed) test data.
class_list : 1-D array of all classes in output.
weight_path : Path to model weights.
output_path : Path to which submission is saved.
"""
model.load_weights(weight_path)
y_test = model.predict(X_test)
sample_submission = pd.read_csv('./data/sample_submission.csv')
sample_submission[class_list] = y_test
sample_submission.to_csv(output_path, index=False)
def print_toxicity_report(preds, threshold=0.6, classes=None):
"""Print detected classes of toxicity in a sentence based on threshold.
Parameters
----------
preds : Probabilities of each type of toxicity
threshold : Threshold probability for when a type of toxicity is present
classes : List of all toxicity types
"""
if classes is None:
classes = ['toxic', 'severe_toxic', 'obscene', 'threat', 'insult', 'identity_hate']
if sum(preds > threshold) > 0:
precent_classes = [classes[i] for i in range(len(classes))
if preds[i] > threshold]
toxicity_levels = [preds[i] for i in range(len(classes))
if preds[i] > threshold]
print('Based on a toxicity threshold of ', str(threshold), 'the sentence',
'is predicted to contain toxic language of the following types;')
for i in range(len(precent_classes)):
print('\t- %s, with probability %.2f' % (precent_classes[i], toxicity_levels[i]))
else:
print('Based on a toxicity threshold of %.1f, ' % threshold,
'the sentence is predicted to contain no toxic language!')
def save_training_predictions(model, X_train, X_aux, class_list, weight_path, output_path):
"""
Predict on test data using supplied (trained) model and create Kaggle
submission file using predictions.
Parameters
----------
model : A trained Keras model.
X_test : Array of (preprocessed) test data.
X_aux : Array of auxilliary inputs (i.e. engineered features)
class_list : 1-D array of all classes in output.
weight_path : Path to model weights.
output_path : Path to which submission is saved.
"""
model.load_weights(weight_path)
y_test = model.predict([X_train, X_aux])
y_df = pd.DataFrame(data=y_test, columns=class_list)
y_df.to_csv(output_path, index=False)
def shuffle_data(features, labels, aux=None):
"""Return features and labels in random order"""
assert features.shape[0] == labels.shape[0]
p = np.random.permutation(features.shape[0])
if aux is not None:
return features[p], labels[p], aux[p]
else:
return features[p], labels[p]
def visualise_attention(attention_vector, input_text, num_epochs=None):
"""Plot attention activations for input text over a number of epochs.
Parameters
----------
attention_vector : Array of attention activations for each time input_text
has beed seen during training (i.e. once per epoch).
input_text : The text string for which attention is to be shown.
"""
input_split = input_text.split(' ')
input_length = len(input_split)
total_epochs = attention_vector.shape[0] - 1
f = plt.figure(figsize=(8.5, int((total_epochs + 2) / 2)))
ax = f.add_subplot(1, 1, 1)
if num_epochs is None:
activation_map = attention_vector[1:, :]
else:
num_rows = np.minimum(total_epochs, num_epochs)
activation_map = attention_vector[-num_rows:, :]
i = ax.imshow(activation_map,
interpolation='nearest',
cmap=plt.get_cmap('YlOrRd'))
cbaxes = f.add_axes([0.2, 0.93, 0.6, 0.03])
cbar = f.colorbar(i, cax=cbaxes, orientation='horizontal')
cbar.ax.set_xlabel('Attention value', labelpad=2)
ax.set_yticklabels('')
ax.set_xticklabels('')
x_ticks = np.linspace(0, input_length - 1, num=input_length)
y_ticks = np.linspace(1, total_epochs, total_epochs)
ax.set_xticks(x_ticks, minor=True)
ax.set_yticks(y_ticks - 0.5, minor=False)
ax.set_xticklabels(input_split, minor=True, rotation=90)
ax.set_yticklabels(y_ticks, minor=False)
plt.show()
def visualise_attention_with_text(attention_vector, input_text,
preds, present_classes,
target=None, labels=None):
"""Visualise the attenton vector during the last epoch of training.
Parameters
----------
attention_vector : Array of attention activations for each time input_text
has beed seen during training (i.e. once per epoch).
input_text : The text string for which attention is to be shown.
preds : Class predictions made by classification model.
target : (Optional) class labels for the input sentence.
"""
fig = plt.figure()
ax = fig.add_axes((0.1, 0.1, 0.8, 0.8))
title = 'Word attention visualisation'
plt.title(title, fontsize=18)
ttl = ax.title
ttl.set_position([0.5, 1.05])
ax.set_xticks([])
ax.set_yticks([])
ax.axis('off')
input_split = input_text.split(' ')
input_array = np.array(input_split).reshape((len(input_split), 1))
attention_map = attention_vector.reshape((attention_vector.shape[0], 1))
cbar_kws = {'label': 'Percentage of total attention',
'orientation': 'horizontal'}
sns.heatmap(attention_map, annot=input_array, fmt='', cmap='YlOrRd',
cbar_kws=cbar_kws, linewidths=0.30, ax=ax)
if target is not None:
txt = 'Actual label: ' + str(target) + \
'\nCorresponding classes: ' + str(labels) + \
'\nPredicted classes: ' + str(present_classes)
# '\nModel prediction: %.2f' % (preds.round(2)) + \
else:
txt = '\nModel prediction: ' + str(preds.round(2)) + \
'\nPredicted toxicity: ' + str(present_classes)
fig.text(0.5, 0.05, txt, ha='center')
fig.set_size_inches(5, 10, forward=True)
plt.show()