-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
193 lines (143 loc) · 6.51 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import json
import asyncio
from langgraph_agent.tools.tools import pdf
import chainlit as cl
from langchain_core.messages import HumanMessage
from langgraph_agent.agent_state import MessageTypes
from app import App
from langgraph_agent.tools.tools import set_dataset
app = App()
global task_list
task_part_list = []
current_task = 0
async def init_task_list():
# Create the TaskList
global task_list
task_list = cl.TaskList()
task_list.status = "Çalışıyor..."
task1 = cl.Task(title="Veriseti analizi", status=cl.TaskStatus.RUNNING)
task2 = cl.Task(title="Veriseti önişleme", status=cl.TaskStatus.READY)
await task_list.add_task(task1)
await task_list.add_task(task2)
task_part_list.append(task1)
task_part_list.append(task2)
# Update the task list in the interface
await task_list.send()
await asyncio.sleep(0.5)
# Callback function to update a specific task's status
async def update_task_status(task, new_status):
task.status = new_status # Update task status
await task_list.send()
await asyncio.sleep(0.5)
async def add_task(title, statues):
new_task = cl.Task(title=title, status=statues)
task_part_list.append(new_task)
await task_list.add_task(new_task)
await task_list.send()
await asyncio.sleep(0.5)
async def inform_about_preprocessing():
response = app.stream_app()
image = cl.Image(path="./public/images/missing_handling_graph.jpg", name="handle_missing", display="inline", size="large")
await cl.Message(
content="Missing Handling Strategy Graph",
elements=[image],
).send()
await update_task_status(task_part_list[1], cl.TaskStatus.READY) # Magic Number! Change it
res = await cl.AskActionMessage(
content=response.content,
actions=[
cl.Action(name="continue", value="continue", label="✅ Continue"),
cl.Action(name="cancel", value="cancel", label="❌ Cancel"),
],
timeout=99999
).send()
if res and res.get("value") == "continue":
# Update Frontend
await update_task_status(task_part_list[1], cl.TaskStatus.RUNNING)
await add_task("Eksik Değerlerin Giderilmesi", cl.TaskStatus.RUNNING)
await add_task("Aykırı Değerlerin Giderilmesi", cl.TaskStatus.READY)
await add_task("Önişleme Sonuçları", cl.TaskStatus.READY)
# Update Graph
await preprocess_results()
elif res and res.get("value") == "cancel":
# Update Frontend
await cl.Message(content="Preprocessing skipped. Ask me anything about your dataset!").send()
task_list.status = "İptal Edildi."
await update_task_status(task_part_list[1], cl.TaskStatus.FAILED)
# Update Graph
snapshot = app.app_runnable.get_state(app.thread)
snapshot.values['messages'] += [HumanMessage(content="I denied to preprocessing steps.")]
app.app_runnable.update_state(app.thread, snapshot.values, as_node="ask_to_model")
async def preprocess_results():
response = app.stream_app() # Run Handle Missing
snapshot = app.app_runnable.get_state(app.thread)
tool_message = snapshot.values["messages"][-3] # Tool Message Index
tool_message_json = json.loads(tool_message.content)
await cl.Message(content=tool_message_json).send()
await asyncio.sleep(0.5)
await cl.Message(content=response.content).send()
await update_task_status(task_part_list[2], cl.TaskStatus.DONE)
await update_task_status(task_part_list[3], cl.TaskStatus.RUNNING)
response = app.stream_app() # Run Handle Outlier
snapshot = app.app_runnable.get_state(app.thread)
tool_message = snapshot.values["messages"][-3] # Tool Message Index
tool_message_json = json.loads(tool_message.content)
await cl.Message(tool_message_json).send()
await cl.Message(content=response.content).send()
await update_task_status(task_part_list[3], cl.TaskStatus.DONE)
await update_task_status(task_part_list[4], cl.TaskStatus.RUNNING)
response = app.stream_app() # Run End Of Preprocess
await update_task_status(task_part_list[4], cl.TaskStatus.DONE)
task_list.status = "Tamamlandı"
await update_task_status(task_part_list[1], cl.TaskStatus.DONE)
await cl.Message(content=response.content).send()
print(snapshot)
pdf()
# Sending a pdf with the local file path
elements = [
cl.Pdf(name="pdf1", display="inline", path="./output.pdf")
]
# Reminder: The name of the pdf must be in the content of the message
await cl.Message(content="Here is the dataset after preprocessing.", elements=elements).send()
@cl.on_chat_start
async def on_chat_start():
cl.user_session.set("runnable", app.app_runnable)
response = app.stream_app({"messages": [HumanMessage(content="")]})
files = None
# Wait for the user to upload a file
while files is None:
files = await cl.AskFileMessage(
content=response.content, accept=["text/csv"], max_files=1, timeout=999999
).send()
await init_task_list()
dataset = files[0]
set_dataset(dataset.path)
app.stream_app()
snapshot = app.app_runnable.get_state(app.thread)
print(snapshot.values)
tool_message = snapshot.values["messages"][-3] # Tool Message Index
tool_message_json = json.loads(tool_message.content)
await cl.Message(content=tool_message_json).send()
result_message = snapshot.values["messages"][-1]
await cl.Message(content=result_message.content).send()
await update_task_status(task_part_list[0], cl.TaskStatus.DONE)
await update_task_status(task_part_list[1], cl.TaskStatus.RUNNING)
await inform_about_preprocessing()
@cl.on_message
async def on_message(message: cl.Message):
human_message = HumanMessage(content=message.content)
snapshot = app.app_runnable.get_state(app.thread)
snapshot.values['messages'] += [human_message]
app.app_runnable.update_state(config=app.thread, values=snapshot.values, as_node="ask_to_model")
response = app.stream_app()
message_type = snapshot.values["last_message_type"]
if message_type == MessageTypes.CHAT:
await cl.Message(content=response.content).send()
elif message_type == MessageTypes.VERIFICATION:
actions = [
cl.Action(name="approve_tool_use", value="approve", description="approve"),
cl.Action(name="deny_tool_use", value="deny", description="deny"),
]
await cl.Message(content=response.content, actions=actions).send()
snapshot = app.app_runnable.get_state(app.thread)
print(snapshot.values)