-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathtrain_dynamic.py
executable file
·284 lines (243 loc) · 11.5 KB
/
train_dynamic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
"""
main file for training Dynamic LSTM-GNNs
"""
import os
from pathlib import Path
import yaml
import torch
import pytorch_lightning as pl
from pytorch_lightning import loggers
from torch.utils.data import DataLoader
from src.models.utils import collect_outputs
from src.dataloader.ts_reader import LstmDataset, collate_fn
from src.models.dgnn import DynamicLstmGnn
from src.models.utils import get_checkpoint_path, seed_everything
from src.metrics import get_loss_function, get_metrics, get_per_node_result
from src.args import init_lstmgnn_args, add_configs
from src.utils import write_json, write_pkl
from src.utils import record_results
class DynamicGraphModel(pl.LightningModule):
"""
Dynamic Graph Model:
"""
def __init__(self, config, collate, train_set=None, val_set=None, test_set=None):
super().__init__()
self.config = config
self.trainset = train_set
self.validset = val_set
self.testset = test_set
self.learning_rate = self.config['lr']
self.collate = collate
self.task = config['task']
self.is_cls = config['classification']
self.net = DynamicLstmGnn(config)
self.loss = get_loss_function(self.task, config['class_weights'])
self.collect_outputs = lambda x: collect_outputs(x, config['multi_gpu'])
self.compute_metrics = lambda truth, pred : get_metrics(truth, pred, config['verbose'], config['classification'])
self.per_node_metrics = lambda truth, pred : get_per_node_result(truth, pred, self.testset.idx_test, config['classification'])
self.lg_alpha = config['lg_alpha']
def on_train_start(self):
seed_everything(self.config['seed'])
def forward(self, seq, flat):
out = self.net(seq, flat=flat)
return out
def add_losses(self, out, out_lstm, bsz_y):
train_loss = self.loss(out.squeeze(), bsz_y)
train_loss_lstm = self.loss(out_lstm.squeeze(), bsz_y)
tot_loss = train_loss + train_loss_lstm * self.lg_alpha
return train_loss, train_loss_lstm, tot_loss
def training_step(self, batch, batch_idx):
inputs, truth, _ = batch
seq, flat = inputs
pred, pred_lstm = self(seq, flat)
train_loss, train_loss_lstm, tot_loss = self.add_losses(pred, pred_lstm, truth)
log_dict = {'train_loss': train_loss, 'train_loss_lstm': train_loss_lstm, 'train_tot_loss': tot_loss}
return {'loss': train_loss, 'log': log_dict}#, 'progress_bar': log_dict}
def validation_step(self, batch, batch_idx):
inputs, truth, _ = batch
seq, flat = inputs
out, out_lstm = self(seq, flat)
loss, loss_lstm, tot_loss = self.add_losses(out, out_lstm, truth)
results = {
'val_loss': loss,
'val_loss_lstm': loss_lstm,
'val_tot_loss': tot_loss,
'truth': truth, 'pred': out, 'pred_lstm': out_lstm}
return results
def test_step(self, batch, batch_idx):
inputs, truth, ids = batch
seq, flat = inputs
out, out_lstm = self(seq, flat)
loss, loss_lstm, tot_loss = self.add_losses(out, out_lstm, truth)
results = {
'test_loss': loss,
'test_loss_lstm': loss_lstm,
'test_tot_loss': tot_loss,
'truth': truth, 'pred': out, 'pred_lstm': out_lstm}
return results
def validation_epoch_end(self, outputs):
collect_dict = self.collect_outputs(outputs)
log_dict_1 = self.compute_metrics(collect_dict['truth'], collect_dict['pred'])
log_dict_2 = self.compute_metrics(collect_dict['truth'], collect_dict['pred_lstm'])
log_dict_2 = {n+ '_lstm': log_dict_2[n] for n in log_dict_2}
losses = {n: float(collect_dict[n]) for n in ['val_loss', 'val_loss_lstm', 'val_tot_loss']}
log_dict = {**log_dict_1, **log_dict_2, **losses}
per_node = self.per_node_metrics(collect_dict['truth'], collect_dict['pred'])
results = {'log': log_dict, 'progress_bar': losses}
results = {**results, **log_dict}
return results
def test_epoch_end(self, outputs):
collect_dict = self.collect_outputs(outputs)
log_dict_1 = self.compute_metrics(collect_dict['truth'], collect_dict['pred'])
log_dict_2 = self.compute_metrics(collect_dict['truth'], collect_dict['pred_lstm'])
log_dict_2 = {n+ '_lstm': log_dict_2[n] for n in log_dict_2}
log_dict = {**log_dict_1, **log_dict_2}
log_dict = {'test_' + m: log_dict[m] for m in log_dict}
losses = {n: float(collect_dict[n]) for n in ['test_loss', 'test_loss_lstm', 'test_tot_loss']}
log_dict = {**log_dict, **losses}
results = {'log': log_dict}
per_node_1 = self.per_node_metrics(collect_dict['truth'], collect_dict['pred'])
per_node_2 = self.per_node_metrics(collect_dict['truth'], collect_dict['pred_lstm'])
per_node_2 = {n+ '_lstm': per_node_2[n] for n in per_node_2}
per_node = {**per_node_1, **per_node_2}
results['per_node'] = per_node
results = {**results, **log_dict}
return results
def configure_optimizers(self):
opt = torch.optim.Adam(self.net.parameters(), lr=self.learning_rate, weight_decay=self.config['l2'])
if self.config['sch'] == 'cosine':
sch = torch.optim.lr_scheduler.CosineAnnealingLR(opt, T_max=10)
else:
sch = torch.optim.lr_scheduler.ReduceLROnPlateau(opt, factor=0.5, patience=2)
return [opt], [sch]
def train_dataloader(self):
return DataLoader(self.trainset, collate_fn=self.collate, batch_size=self.config['batch_size'], num_workers=self.config['num_workers'], shuffle=True)
def val_dataloader(self):
return DataLoader(self.validset, collate_fn=self.collate, batch_size=self.config['batch_size'], num_workers=self.config['num_workers'], shuffle=False)
def test_dataloader(self):
return DataLoader(self.testset, collate_fn=self.collate, batch_size=self.config['batch_size'], num_workers=self.config['num_workers'], shuffle=False)
@staticmethod
def load_model(log_dir, **hconfig):
"""
:param log_dir: str, path to the directory that must contain a .yaml file containing the model hyperparameters and a .ckpt file as saved by pytorch-lightning;
:param config: list of named arguments, used to update the model hyperparameters
"""
assert os.path.exists(log_dir)
# load hparams
with open(list(Path(log_dir).glob('**/*yaml'))[0]) as fp:
config = yaml.load(fp, Loader=yaml.Loader)
config.update(hconfig)
loaderDict, collate = get_data(config)
model_path = list(Path(log_dir).glob('**/*ckpt'))[0]
print(f'Loading model {model_path.parent.stem}')
args = {'config': dict(config), 'collate': collate,
'train_set': loaderDict['train'], 'val_set': loaderDict['val'], 'test_set': loaderDict['test']}
model = DynamicGraphModel.load_from_checkpoint(checkpoint_path=str(model_path), **args)
return model, config, loaderDict, collate
def get_data(config):
"""
produce dataloaders for training and validating
"""
loaderDict = {split: LstmDataset(config, split) for split in ['train', 'val', 'test']}
config['lstm_indim'] = loaderDict['train'].ts_dim
config['num_flat_feats'] = loaderDict['train'].flat_dim if config['add_flat'] else 0
config['class_weights'] = loaderDict['train'].class_weights if config['class_weights'] else False
collate = lambda x: collate_fn(x, config['task'])
return loaderDict, collate
def main(config):
"""
Main function for training Dyanmic LSTM-GNNs.
After training, results on validation & test sets are recorded in the specified log_path.
"""
loaderDict, collate = get_data(config)
# define logger
Path(config['log_path']).mkdir(parents=True, exist_ok=True)
logger = loggers.TensorBoardLogger(config['log_path'], version=config['version'])
logger.log_hyperparams(params=config)
# define model
if config['debug']:
model = DynamicGraphModel(config, collate, loaderDict['val'], loaderDict['test'], loaderDict['test'])
else:
model = DynamicGraphModel(config, collate, loaderDict['train'], loaderDict['val'], loaderDict['test'])
chkpt = None if config['load'] is None else get_checkpoint_path(config['load'])
trainer = pl.Trainer(
gpus=config['gpus'],
logger=logger,
max_epochs=config['epochs'],
distributed_backend='dp',
precision=16 if config['use_amp'] else 32,
default_root_dir=config['log_path'],
deterministic=True,
resume_from_checkpoint=chkpt,
auto_lr_find=config['auto_lr'],
auto_scale_batch_size=config['auto_bsz']
)
trainer.fit(model)
for phase in ['test', 'valid']:
if phase == 'valid':
ret = trainer.test(test_dataloaders=model.val_dataloader())
else:
ret = trainer.test()
if isinstance(ret, list):
ret = ret[0]
per_node = ret.pop('per_node')
test_results = ret
res_dir = Path(config['log_path']) / 'default'
if config['version'] is not None:
res_dir = res_dir / config['version']
else:
res_dir = res_dir / ('results_' + str(config['seed']))
print(phase, ':', test_results)
Path(res_dir).mkdir(parents=True, exist_ok=True)
write_json(test_results, res_dir / f'{phase}_results.json', sort_keys=True, verbose=True)
write_pkl(per_node, res_dir / f'{phase}_per_node.pkl')
path_results = Path(config['log_path']) / f'all_{phase}_results.csv'
record_results(path_results, config, test_results)
def main_test(hparams, path_results=None):
"""
main function to load and evaluate a trained model.
"""
assert (hparams['load'] is not None) and (hparams['phase'] is not None)
phase = hparams['phase']
log_dir = hparams['load']
# Load trained model
print(f'Loading from {log_dir} to evaluate {phase} data.')
model, config, loaderDict, collate = DynamicGraphModel.load_model(log_dir, \
data_dir=hparams['data_dir'],
multi_gpu=hparams['multi_gpu'], num_workers=hparams['num_workers'])
trainer = pl.Trainer(
gpus=hparams['gpus'],
logger=None,
max_epochs=hparams['epochs'],
default_root_dir=hparams['log_path'],
deterministic=True
)
# Evaluate the model
test_dataloader = DataLoader(loaderDict[phase], collate_fn=collate, batch_size=config['batch_size'], num_workers=config['num_workers'], shuffle=False)
test_results = trainer.test(model, test_dataloaders=test_dataloader)
if isinstance(test_results, list):
test_results = test_results[0]
per_node = test_results.pop('per_node')
print(phase, ':', test_results)
# Save evaluation results
results_path = Path(log_dir) / f'{phase}_results.json'
write_json(test_results, results_path, sort_keys=True, verbose=True)
write_pkl(per_node, Path(log_dir) / f'{phase}_per_node.pkl')
if path_results is None:
path_results = Path(log_dir).parent / 'results.csv'
tmp = {'version': hparams['version']}
tmp = {**tmp, **config}
record_results(path_results, tmp, test_results)
if __name__ == '__main__':
# define configs
parser = init_lstmgnn_args()
config = parser.parse_args()
config.model = 'lstmgnn'
config.dynamic_g = True
config = add_configs(config)
for key in sorted(config):
print(f'{key}: ', config[key])
if config['test']:
main_test(config)
else:
main(config)