forked from XLearning-SCU/2022-CVPR-AirNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
option.py
31 lines (24 loc) · 1.69 KB
/
option.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
import argparse
parser = argparse.ArgumentParser()
# Input Parameters
parser.add_argument('--cuda', type=int, default=0)
parser.add_argument('--epochs', type=int, default=100, help='maximum number of epochs to train the total model.')
parser.add_argument('--epochs_encoder', type=int, default=100, help='number of epochs to train encoder.')
parser.add_argument('--lr', type=float, default=1e-3, help='learning rate of encoder.')
parser.add_argument('--de_type', type=list, default=['denoise_15', 'denoise_25', 'denoise_50', 'derain', 'dehaze'],
help='which type of degradations is training and testing for.')
parser.add_argument('--patch_size', type=int, default=128, help='patcphsize of input.')
parser.add_argument('--encoder_dim', type=int, default=256, help='the dimensionality of encoder.')
parser.add_argument('--num_workers', type=int, default=0, help='number of workers.')
# path
parser.add_argument('--data_file_dir', type=str, default='data_dir/', help='where clean images of denoising saves.')
parser.add_argument('--denoise_dir', type=str, default='data/Train/Denoise/',
help='where clean images of denoising saves.')
parser.add_argument('--derain_dir', type=str, default='data/Train/Derain/',
help='where training images of deraining saves.')
parser.add_argument('--dehaze_dir', type=str, default='data/Train/Dehaze/',
help='where training images of dehazing saves.')
parser.add_argument('--output_path', type=str, default="output/", help='output save path')
parser.add_argument('--ckpt_path', type=str, default="ckpt/Denoise/", help='checkpoint save path')
options = parser.parse_args()
options.batch_size = len(options.de_type)