-
-
Notifications
You must be signed in to change notification settings - Fork 49
/
Copy pathSecurity.cs
326 lines (264 loc) · 18.2 KB
/
Security.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
using System;
using System.Collections.Generic;
using System.Security.Cryptography;
using System.Text;
using DocumentFormat.OpenXml;
using DocumentFormat.OpenXml.Packaging;
using DocumentFormat.OpenXml.Wordprocessing;
namespace OfficeIMO.Word {
/// <summary>
/// Based on http://blogs.msdn.com/b/vsod/archive/2010/04/05/how-to-set-the-editing-restrictions-in-word-using-open-xml-sdk-2-0.aspx
/// Based on https://web.archive.org/web/20190108115756/https://blogs.msdn.microsoft.com/vsod/2010/04/05/how-to-set-the-editing-restrictions-in-word-using-open-xml-sdk-2-0/
/// Based on https://gist.github.com/wullemsb/3230b00ca72cf98b33de/
/// </summary>
internal static class Security {
private static readonly int[] InitialCodeArray = { 0xE1F0, 0x1D0F, 0xCC9C, 0x84C0, 0x110C, 0x0E10, 0xF1CE, 0x313E, 0x1872, 0xE139, 0xD40F, 0x84F9, 0x280C, 0xA96A, 0x4EC3 };
private static readonly int[,] EncryptionMatrix = new int[15, 7] {
/* char 1 */ {0xAEFC, 0x4DD9, 0x9BB2, 0x2745, 0x4E8A, 0x9D14, 0x2A09},
/* char 2 */ {0x7B61, 0xF6C2, 0xFDA5, 0xEB6B, 0xC6F7, 0x9DCF, 0x2BBF},
/* char 3 */ {0x4563, 0x8AC6, 0x05AD, 0x0B5A, 0x16B4, 0x2D68, 0x5AD0},
/* char 4 */ {0x0375, 0x06EA, 0x0DD4, 0x1BA8, 0x3750, 0x6EA0, 0xDD40},
/* char 5 */ {0xD849, 0xA0B3, 0x5147, 0xA28E, 0x553D, 0xAA7A, 0x44D5},
/* char 6 */ {0x6F45, 0xDE8A, 0xAD35, 0x4A4B, 0x9496, 0x390D, 0x721A},
/* char 7 */ {0xEB23, 0xC667, 0x9CEF, 0x29FF, 0x53FE, 0xA7FC, 0x5FD9},
/* char 8 */ {0x47D3, 0x8FA6, 0x0F6D, 0x1EDA, 0x3DB4, 0x7B68, 0xF6D0},
/* char 9 */ {0xB861, 0x60E3, 0xC1C6, 0x93AD, 0x377B, 0x6EF6, 0xDDEC},
/* char 10 */ {0x45A0, 0x8B40, 0x06A1, 0x0D42, 0x1A84, 0x3508, 0x6A10},
/* char 11 */ {0xAA51, 0x4483, 0x8906, 0x022D, 0x045A, 0x08B4, 0x1168},
/* char 12 */ {0x76B4, 0xED68, 0xCAF1, 0x85C3, 0x1BA7, 0x374E, 0x6E9C},
/* char 13 */ {0x3730, 0x6E60, 0xDCC0, 0xA9A1, 0x4363, 0x86C6, 0x1DAD},
/* char 14 */ {0x3331, 0x6662, 0xCCC4, 0x89A9, 0x0373, 0x06E6, 0x0DCC},
/* char 15 */ {0x1021, 0x2042, 0x4084, 0x8108, 0x1231, 0x2462, 0x48C4}
};
private static byte[] ConcatByteArrays(byte[] array1, byte[] array2) {
byte[] result = new byte[array1.Length + array2.Length];
Buffer.BlockCopy(array2, 0, result, 0, array2.Length);
Buffer.BlockCopy(array1, 0, result, array2.Length, array1.Length);
return result;
}
internal static void ProtectWordDoc(WordprocessingDocument wordDocument, string password, DocumentProtectionValues documentProtectionValue = DocumentProtectionValues.ReadOnly) {
// Generate the Salt
byte[] arrSalt = new byte[16];
RandomNumberGenerator rand = new RNGCryptoServiceProvider();
rand.GetNonZeroBytes(arrSalt);
//Array to hold Key Values
byte[] generatedKey = new byte[4];
//Maximum length of the password is 15 chars.
int intMaxPasswordLength = 15;
if (!String.IsNullOrEmpty(password)) {
// Truncate the password to 15 characters
password = password.Substring(0, Math.Min(password.Length, intMaxPasswordLength));
// Construct a new NULL-terminated string consisting of single-byte characters:
// -- > Get the single-byte values by iterating through the Unicode characters of the truncated Password.
// --> For each character, if the low byte is not equal to 0, take it. Otherwise, take the high byte.
byte[] arrByteChars = new byte[password.Length];
for (int intLoop = 0; intLoop < password.Length; intLoop++) {
int intTemp = Convert.ToInt32(password[intLoop]);
arrByteChars[intLoop] = Convert.ToByte(intTemp & 0x00FF);
if (arrByteChars[intLoop] == 0)
arrByteChars[intLoop] = Convert.ToByte((intTemp & 0xFF00) >> 8);
}
// Compute the high-order word of the new key:
// --> Initialize from the initial code array (see below), depending on the strPassword’s length.
int intHighOrderWord = InitialCodeArray[arrByteChars.Length - 1];
// --> For each character in the strPassword:
// --> For every bit in the character, starting with the least significant and progressing to (but excluding)
// the most significant, if the bit is set, XOR the key’s high-order word with the corresponding word from
// the Encryption Matrix
for (int intLoop = 0; intLoop < arrByteChars.Length; intLoop++) {
int tmp = intMaxPasswordLength - arrByteChars.Length + intLoop;
for (int intBit = 0; intBit < 7; intBit++) {
if ((arrByteChars[intLoop] & (0x0001 << intBit)) != 0) {
intHighOrderWord ^= EncryptionMatrix[tmp, intBit];
}
}
}
// Compute the low-order word of the new key:
// Initialize with 0
int intLowOrderWord = 0;
// For each character in the strPassword, going backwards
for (int intLoopChar = arrByteChars.Length - 1; intLoopChar >= 0; intLoopChar--) {
// low-order word = (((low-order word SHR 14) AND 0x0001) OR (low-order word SHL 1) AND 0x7FFF)) XOR character
intLowOrderWord = (((intLowOrderWord >> 14) & 0x0001) | ((intLowOrderWord << 1) & 0x7FFF)) ^ arrByteChars[intLoopChar];
}
// Lastly,low-order word = (((low-order word SHR 14) AND 0x0001) OR (low-order word SHL 1) AND 0x7FFF)) XOR strPassword length XOR 0xCE4B.
intLowOrderWord = (((intLowOrderWord >> 14) & 0x0001) | ((intLowOrderWord << 1) & 0x7FFF)) ^ arrByteChars.Length ^ 0xCE4B;
// Combine the Low and High Order Word
int intCombinedkey = (intHighOrderWord << 16) + intLowOrderWord;
// The byte order of the result shall be reversed [Example: 0x64CEED7E becomes 7EEDCE64. end example],
// and that value shall be hashed as defined by the attribute values.
for (int intTemp = 0; intTemp < 4; intTemp++) {
generatedKey[intTemp] = Convert.ToByte(((uint)(intCombinedkey & (0x000000FF << (intTemp * 8)))) >> (intTemp * 8));
}
}
// Implementation Notes List:
// --> In this third stage, the reversed byte order legacy hash from the second stage shall be converted to Unicode hex
// --> string representation
StringBuilder sb = new StringBuilder();
for (int intTemp = 0; intTemp < 4; intTemp++) {
sb.Append(Convert.ToString(generatedKey[intTemp], 16));
}
generatedKey = Encoding.Unicode.GetBytes(sb.ToString().ToUpper());
// Implementation Notes List:
//Word appends the binary form of the salt attribute and not the base64 string representation when hashing
// Before calculating the initial hash, you are supposed to prepend (not append) the salt to the key
byte[] tmpArray1 = generatedKey;
byte[] tmpArray2 = arrSalt;
byte[] tempKey = new byte[tmpArray1.Length + tmpArray2.Length];
Buffer.BlockCopy(tmpArray2, 0, tempKey, 0, tmpArray2.Length);
Buffer.BlockCopy(tmpArray1, 0, tempKey, tmpArray2.Length, tmpArray1.Length);
generatedKey = tempKey;
// Iterations specifies the number of times the hashing function shall be iteratively run (using each
// iteration's result as the input for the next iteration).
int iterations = 50000;
// Implementation Notes List:
//Word requires that the initial hash of the password with the salt not be considered in the count.
// The initial hash of salt + key is not included in the iteration count.
HashAlgorithm sha1 = new SHA1Managed();
generatedKey = sha1.ComputeHash(generatedKey);
byte[] iterator = new byte[4];
for (int intTmp = 0; intTmp < iterations; intTmp++) {
//When iterating on the hash, you are supposed to append the current iteration number.
iterator[0] = Convert.ToByte((intTmp & 0x000000FF) >> 0);
iterator[1] = Convert.ToByte((intTmp & 0x0000FF00) >> 8);
iterator[2] = Convert.ToByte((intTmp & 0x00FF0000) >> 16);
iterator[3] = Convert.ToByte((intTmp & 0xFF000000) >> 24);
generatedKey = ConcatByteArrays(iterator, generatedKey);
generatedKey = sha1.ComputeHash(generatedKey);
}
// Apply the element
DocumentProtection documentProtection = new DocumentProtection();
documentProtection.Edit = documentProtectionValue;
OnOffValue docProtection = new OnOffValue(true);
documentProtection.Enforcement = docProtection;
documentProtection.CryptographicAlgorithmClass = CryptAlgorithmClassValues.Hash;
documentProtection.CryptographicProviderType = CryptProviderValues.RsaFull;
documentProtection.CryptographicAlgorithmType = CryptAlgorithmValues.TypeAny;
documentProtection.CryptographicAlgorithmSid = 4; // SHA1
// The iteration count is unsigned
UInt32Value uintVal = new UInt32Value();
uintVal.Value = (uint)iterations;
documentProtection.CryptographicSpinCount = uintVal;
documentProtection.Hash = Convert.ToBase64String(generatedKey);
documentProtection.Salt = Convert.ToBase64String(arrSalt);
wordDocument.MainDocumentPart.DocumentSettingsPart.Settings.AppendChild(documentProtection);
wordDocument.MainDocumentPart.DocumentSettingsPart.Settings.Save();
}
/// <summary>
/// WriteProtection password for optional ReadOnly
/// Doesn't seem to work...
/// </summary>
/// <param name="wordDocument"></param>
/// <param name="password"></param>
internal static void SetWriteProtection(WordprocessingDocument wordDocument, string password) {
// Generate the Salt
byte[] arrSalt = new byte[16];
RandomNumberGenerator rand = new RNGCryptoServiceProvider();
rand.GetNonZeroBytes(arrSalt);
//Array to hold Key Values
byte[] generatedKey = new byte[4];
//Maximum length of the password is 15 chars.
int intMaxPasswordLength = 15;
if (!String.IsNullOrEmpty(password)) {
// Truncate the password to 15 characters
password = password.Substring(0, Math.Min(password.Length, intMaxPasswordLength));
// Construct a new NULL-terminated string consisting of single-byte characters:
// -- > Get the single-byte values by iterating through the Unicode characters of the truncated Password.
// --> For each character, if the low byte is not equal to 0, take it. Otherwise, take the high byte.
byte[] arrByteChars = new byte[password.Length];
for (int intLoop = 0; intLoop < password.Length; intLoop++) {
int intTemp = Convert.ToInt32(password[intLoop]);
arrByteChars[intLoop] = Convert.ToByte(intTemp & 0x00FF);
if (arrByteChars[intLoop] == 0)
arrByteChars[intLoop] = Convert.ToByte((intTemp & 0xFF00) >> 8);
}
// Compute the high-order word of the new key:
// --> Initialize from the initial code array (see below), depending on the strPassword’s length.
int intHighOrderWord = InitialCodeArray[arrByteChars.Length - 1];
// --> For each character in the strPassword:
// --> For every bit in the character, starting with the least significant and progressing to (but excluding)
// the most significant, if the bit is set, XOR the key’s high-order word with the corresponding word from
// the Encryption Matrix
for (int intLoop = 0; intLoop < arrByteChars.Length; intLoop++) {
int tmp = intMaxPasswordLength - arrByteChars.Length + intLoop;
for (int intBit = 0; intBit < 7; intBit++) {
if ((arrByteChars[intLoop] & (0x0001 << intBit)) != 0) {
intHighOrderWord ^= EncryptionMatrix[tmp, intBit];
}
}
}
// Compute the low-order word of the new key:
// Initialize with 0
int intLowOrderWord = 0;
// For each character in the strPassword, going backwards
for (int intLoopChar = arrByteChars.Length - 1; intLoopChar >= 0; intLoopChar--) {
// low-order word = (((low-order word SHR 14) AND 0x0001) OR (low-order word SHL 1) AND 0x7FFF)) XOR character
intLowOrderWord = (((intLowOrderWord >> 14) & 0x0001) | ((intLowOrderWord << 1) & 0x7FFF)) ^ arrByteChars[intLoopChar];
}
// Lastly,low-order word = (((low-order word SHR 14) AND 0x0001) OR (low-order word SHL 1) AND 0x7FFF)) XOR strPassword length XOR 0xCE4B.
intLowOrderWord = (((intLowOrderWord >> 14) & 0x0001) | ((intLowOrderWord << 1) & 0x7FFF)) ^ arrByteChars.Length ^ 0xCE4B;
// Combine the Low and High Order Word
int intCombinedkey = (intHighOrderWord << 16) + intLowOrderWord;
// The byte order of the result shall be reversed [Example: 0x64CEED7E becomes 7EEDCE64. end example],
// and that value shall be hashed as defined by the attribute values.
for (int intTemp = 0; intTemp < 4; intTemp++) {
generatedKey[intTemp] = Convert.ToByte(((uint)(intCombinedkey & (0x000000FF << (intTemp * 8)))) >> (intTemp * 8));
}
}
// Implementation Notes List:
// --> In this third stage, the reversed byte order legacy hash from the second stage shall be converted to Unicode hex
// --> string representation
StringBuilder sb = new StringBuilder();
for (int intTemp = 0; intTemp < 4; intTemp++) {
sb.Append(Convert.ToString(generatedKey[intTemp], 16));
}
generatedKey = Encoding.Unicode.GetBytes(sb.ToString().ToUpper());
// Implementation Notes List:
//Word appends the binary form of the salt attribute and not the base64 string representation when hashing
// Before calculating the initial hash, you are supposed to prepend (not append) the salt to the key
byte[] tmpArray1 = generatedKey;
byte[] tmpArray2 = arrSalt;
byte[] tempKey = new byte[tmpArray1.Length + tmpArray2.Length];
Buffer.BlockCopy(tmpArray2, 0, tempKey, 0, tmpArray2.Length);
Buffer.BlockCopy(tmpArray1, 0, tempKey, tmpArray2.Length, tmpArray1.Length);
generatedKey = tempKey;
// Iterations specifies the number of times the hashing function shall be iteratively run (using each
// iteration's result as the input for the next iteration).
int iterations = 50000;
// Implementation Notes List:
//Word requires that the initial hash of the password with the salt not be considered in the count.
// The initial hash of salt + key is not included in the iteration count.
HashAlgorithm sha1 = new SHA1Managed();
generatedKey = sha1.ComputeHash(generatedKey);
byte[] iterator = new byte[4];
for (int intTmp = 0; intTmp < iterations; intTmp++) {
//When iterating on the hash, you are supposed to append the current iteration number.
iterator[0] = Convert.ToByte((intTmp & 0x000000FF) >> 0);
iterator[1] = Convert.ToByte((intTmp & 0x0000FF00) >> 8);
iterator[2] = Convert.ToByte((intTmp & 0x00FF0000) >> 16);
iterator[3] = Convert.ToByte((intTmp & 0xFF000000) >> 24);
generatedKey = ConcatByteArrays(iterator, generatedKey);
generatedKey = sha1.ComputeHash(generatedKey);
}
// Apply the element
if (wordDocument.MainDocumentPart.DocumentSettingsPart.Settings.WriteProtection == null) {
WriteProtection documentProtection = new WriteProtection();
wordDocument.MainDocumentPart.DocumentSettingsPart.Settings.AppendChild(documentProtection);
}
OnOffValue docProtection = new OnOffValue(true);
//wordDocument.MainDocumentPart.DocumentSettingsPart.Settings.WriteProtection.Recommended = docProtection;
wordDocument.MainDocumentPart.DocumentSettingsPart.Settings.WriteProtection.CryptographicAlgorithmClass = CryptAlgorithmClassValues.Hash;
wordDocument.MainDocumentPart.DocumentSettingsPart.Settings.WriteProtection.CryptographicProviderType = CryptProviderValues.RsaFull;
wordDocument.MainDocumentPart.DocumentSettingsPart.Settings.WriteProtection.CryptographicAlgorithmType = CryptAlgorithmValues.TypeAny;
wordDocument.MainDocumentPart.DocumentSettingsPart.Settings.WriteProtection.CryptographicAlgorithmSid = 4; // SHA1
// The iteration count is unsigned
UInt32Value uintVal = new UInt32Value {
Value = (uint)iterations
};
wordDocument.MainDocumentPart.DocumentSettingsPart.Settings.WriteProtection.CryptographicSpinCount = uintVal;
wordDocument.MainDocumentPart.DocumentSettingsPart.Settings.WriteProtection.Hash = Convert.ToBase64String(generatedKey);
wordDocument.MainDocumentPart.DocumentSettingsPart.Settings.WriteProtection.Salt = Convert.ToBase64String(arrSalt);
wordDocument.MainDocumentPart.DocumentSettingsPart.Settings.Save();
}
}
}