forked from rhiever/datacleaner
-
Notifications
You must be signed in to change notification settings - Fork 0
/
tests.py
237 lines (168 loc) · 9.96 KB
/
tests.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
from datacleaner import autoclean, autoclean_cv
import pandas as pd
import numpy as np
from sklearn.preprocessing import LabelEncoder
np.random.seed(300)
def test_autoclean_already_clean_data():
"""Test autoclean() with already-clean data"""
data = pd.DataFrame({'A': np.random.rand(1000),
'B': np.random.rand(1000),
'C': np.random.randint(0, 3, 1000)})
cleaned_data = autoclean(data)
# autoclean() should not change the data at all
assert cleaned_data.equals(data)
def test_autoclean_cv_already_clean_data():
"""Test autoclean_cv() with already-clean data"""
data = pd.DataFrame({'A': np.random.rand(1000),
'B': np.random.rand(1000),
'C': np.random.randint(0, 3, 1000)})
training_data = data[:500].copy()
testing_data = data[500:].copy()
cleaned_training_data, cleaned_testing_data = autoclean_cv(training_data, testing_data)
# autoclean_cv() should not change the data at all
assert cleaned_training_data.equals(training_data)
assert cleaned_testing_data.equals(testing_data)
def test_autoclean_with_nans_all_numerical():
"""Test autoclean() with a data set that has all numerical values and some NaNs"""
data = pd.DataFrame({'A': np.random.rand(1000),
'B': np.random.rand(1000),
'C': np.random.randint(0, 3, 1000)})
data.loc[10:20, 'A'] = np.nan
data.loc[50:70, 'C'] = np.nan
hand_cleaned_data = data.copy()
hand_cleaned_data['A'].fillna(hand_cleaned_data['A'].median(), inplace=True)
hand_cleaned_data['C'].fillna(hand_cleaned_data['C'].median(), inplace=True)
cleaned_data = autoclean(data)
assert cleaned_data.equals(hand_cleaned_data)
def test_autoclean_cv_with_nans_all_numerical():
"""Test autoclean_cv() with a data set that has all numerical values and some NaNs"""
data = pd.DataFrame({'A': np.random.rand(1000),
'B': np.random.rand(1000),
'C': np.random.randint(0, 3, 1000)})
training_data = data[:500].copy()
testing_data = data[500:].copy()
training_data.loc[10:20, 'A'] = np.nan
training_data.loc[50:70, 'C'] = np.nan
testing_data.loc[70:80, 'A'] = np.nan
testing_data.loc[10:40, 'C'] = np.nan
hand_cleaned_training_data = training_data.copy()
hand_cleaned_testing_data = testing_data.copy()
training_A_median = hand_cleaned_training_data['A'].median()
training_C_median = hand_cleaned_training_data['C'].median()
hand_cleaned_training_data['A'].fillna(training_A_median, inplace=True)
hand_cleaned_training_data['C'].fillna(training_C_median, inplace=True)
hand_cleaned_testing_data['A'].fillna(training_A_median, inplace=True)
hand_cleaned_testing_data['C'].fillna(training_C_median, inplace=True)
cleaned_training_data, cleaned_testing_data = autoclean_cv(training_data, testing_data)
assert cleaned_training_data.equals(hand_cleaned_training_data)
assert cleaned_testing_data.equals(hand_cleaned_testing_data)
def test_autoclean_no_nans_with_strings():
"""Test autoclean() with a data set that has some string-encoded categorical values and no NaNs"""
data = pd.DataFrame({'A': np.random.rand(1000),
'B': np.random.rand(1000),
'C': np.random.randint(0, 3, 1000)})
string_map = {0: 'oranges', 1: 'apples', 2: 'bananas'}
data['C'] = data['C'].apply(lambda x: string_map[x])
hand_cleaned_data = data.copy()
hand_cleaned_data['C'] = LabelEncoder().fit_transform(hand_cleaned_data['C'].values)
cleaned_data = autoclean(data)
assert cleaned_data.equals(hand_cleaned_data)
def test_autoclean_cv_no_nans_with_strings():
"""Test autoclean_cv() with a data set that has some string-encoded categorical values and no NaNs"""
data = pd.DataFrame({'A': np.random.rand(1000),
'B': np.random.rand(1000),
'C': np.random.randint(0, 3, 1000)})
string_map = {0: 'oranges', 1: 'apples', 2: 'bananas'}
data['C'] = data['C'].apply(lambda x: string_map[x])
training_data = data[:500].copy()
testing_data = data[500:].copy()
cleaned_training_data, cleaned_testing_data = autoclean_cv(training_data, testing_data)
hand_cleaned_training_data = training_data.copy()
hand_cleaned_testing_data = testing_data.copy()
encoder = LabelEncoder()
hand_cleaned_training_data['C'] = encoder.fit_transform(hand_cleaned_training_data['C'].values)
hand_cleaned_testing_data['C'] = encoder.transform(hand_cleaned_testing_data['C'].values)
assert cleaned_training_data.equals(hand_cleaned_training_data)
assert cleaned_testing_data.equals(hand_cleaned_testing_data)
def test_autoclean_with_nans_with_strings():
"""Test autoclean() with a data set that has some string-encoded categorical values and some NaNs"""
data = pd.DataFrame({'A': np.random.rand(1000),
'B': np.random.rand(1000),
'C': np.random.randint(0, 3, 1000)})
string_map = {0: 'oranges', 1: 'apples', 2: 'bananas'}
data['C'] = data['C'].apply(lambda x: string_map[x])
data.loc[10:20, 'A'] = np.nan
data.loc[50:70, 'C'] = np.nan
hand_cleaned_data = data.copy()
hand_cleaned_data['A'].fillna(hand_cleaned_data['A'].median(), inplace=True)
hand_cleaned_data['C'].fillna(hand_cleaned_data['C'].mode()[0], inplace=True)
hand_cleaned_data['C'] = LabelEncoder().fit_transform(hand_cleaned_data['C'].values)
cleaned_data = autoclean(data)
assert cleaned_data.equals(hand_cleaned_data)
def test_autoclean_cv_with_nans_with_strings():
"""Test autoclean_cv() with a data set that has some string-encoded categorical values and some NaNs"""
data = pd.DataFrame({'A': np.random.rand(1000),
'B': np.random.rand(1000),
'C': np.random.randint(0, 3, 1000)})
string_map = {0: 'oranges', 1: 'apples', 2: 'bananas'}
data['C'] = data['C'].apply(lambda x: string_map[x])
training_data = data[:500].copy()
testing_data = data[500:].copy()
training_data.loc[10:20, 'A'] = np.nan
training_data.loc[50:70, 'C'] = np.nan
testing_data.loc[70:80, 'A'] = np.nan
testing_data.loc[10:40, 'C'] = np.nan
hand_cleaned_training_data = training_data.copy()
hand_cleaned_testing_data = testing_data.copy()
training_A_median = hand_cleaned_training_data['A'].median()
training_C_mode = hand_cleaned_training_data['C'].mode()[0]
hand_cleaned_training_data['A'].fillna(training_A_median, inplace=True)
hand_cleaned_training_data['C'].fillna(training_C_mode, inplace=True)
hand_cleaned_testing_data['A'].fillna(training_A_median, inplace=True)
hand_cleaned_testing_data['C'].fillna(training_C_mode, inplace=True)
encoder = LabelEncoder()
hand_cleaned_training_data['C'] = encoder.fit_transform(hand_cleaned_training_data['C'].values)
hand_cleaned_testing_data['C'] = encoder.transform(hand_cleaned_testing_data['C'].values)
cleaned_training_data, cleaned_testing_data = autoclean_cv(training_data, testing_data)
assert cleaned_training_data.equals(hand_cleaned_training_data)
assert cleaned_testing_data.equals(hand_cleaned_testing_data)
def test_autoclean_real_data():
"""Test autoclean() with the adult data set"""
adult_data = pd.read_csv('adult.csv.gz', sep='\t', compression='gzip')
adult_data.loc[30:60, 'age'] = np.nan
adult_data.loc[90:100, 'education'] = np.nan
hand_cleaned_adult_data = adult_data.copy()
hand_cleaned_adult_data['age'].fillna(hand_cleaned_adult_data['age'].median(), inplace=True)
hand_cleaned_adult_data['education'].fillna(hand_cleaned_adult_data['education'].mode()[0], inplace=True)
for column in ['workclass', 'education', 'marital-status',
'occupation', 'relationship', 'race',
'sex', 'native-country', 'label']:
hand_cleaned_adult_data[column] = LabelEncoder().fit_transform(hand_cleaned_adult_data[column].values)
cleaned_adult_data = autoclean(adult_data)
assert cleaned_adult_data.equals(hand_cleaned_adult_data)
def test_autoclean_cv_real_data():
"""Test autoclean_cv() with the adult data set"""
adult_data = pd.read_csv('adult.csv.gz', sep='\t', compression='gzip')
training_adult_data = adult_data[:int(len(adult_data) / 2.)].copy()
testing_adult_data = adult_data[int(len(adult_data) / 2.):].copy()
training_adult_data.loc[30:60, 'age'] = np.nan
training_adult_data.loc[90:100, 'education'] = np.nan
testing_adult_data.loc[90:110, 'age'] = np.nan
testing_adult_data.loc[20:40, 'education'] = np.nan
hand_cleaned_training_adult_data = training_adult_data.copy()
hand_cleaned_testing_adult_data = testing_adult_data.copy()
training_age_median = hand_cleaned_training_adult_data['age'].median()
training_education_mode = hand_cleaned_training_adult_data['education'].mode()[0]
hand_cleaned_training_adult_data['age'].fillna(training_age_median, inplace=True)
hand_cleaned_training_adult_data['education'].fillna(training_education_mode, inplace=True)
hand_cleaned_testing_adult_data['age'].fillna(training_age_median, inplace=True)
hand_cleaned_testing_adult_data['education'].fillna(training_education_mode, inplace=True)
for column in ['workclass', 'education', 'marital-status',
'occupation', 'relationship', 'race',
'sex', 'native-country', 'label']:
encoder = LabelEncoder()
hand_cleaned_training_adult_data[column] = encoder.fit_transform(hand_cleaned_training_adult_data[column].values)
hand_cleaned_testing_adult_data[column] = encoder.transform(hand_cleaned_testing_adult_data[column].values)
cleaned_adult_training_data, cleaned_adult_testing_data = autoclean_cv(training_adult_data, testing_adult_data)
assert cleaned_adult_training_data.equals(hand_cleaned_training_adult_data)
assert cleaned_adult_testing_data.equals(hand_cleaned_testing_adult_data)