forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathoptimize_ideep.cc
1018 lines (894 loc) · 32.5 KB
/
optimize_ideep.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#include "caffe2/opt/optimize_ideep.h"
#include "caffe2/opt/converter.h"
#ifdef USE_MKLDNN
#include <cpuinfo.h>
#include "caffe2/ideep/ideep_utils.h"
#endif
namespace caffe2 {
namespace opt {
using namespace nom;
#ifndef USE_MKLDNN
void OptimizeForMkldnn(
repr::NNModule* nn,
caffe2::Workspace* ws,
bool training_mode) {
LOG(WARNING) << "Only support optimizations for IDEEP";
}
#else
USE_IDEEP_DEF_ALIASES();
Blob* getBlob(const std::string name, caffe2::Workspace* ws) {
CAFFE_ENFORCE(ws->HasBlob(name), "Blob ", name, " not in workspace");
return ws->GetBlob(name);
}
Blob* getBlob(repr::NNGraph::NodeRef node, caffe2::Workspace* ws) {
auto tensor = repr::nn::get<repr::Tensor>(node);
return getBlob(tensor->getName(), ws);
}
template <class T>
T getTensor(Blob* blob) {
CAFFE_ENFORCE(blob, "Blob is invalid");
return blob->template Get<T>();
}
template <class T>
T* getMutableTensor(Blob* blob) {
CAFFE_ENFORCE(blob, "Blob is invalid");
if (blob && blob->template IsType<T>()) {
return blob->template GetMutable<T>();
}
return nullptr;
}
const caffe2::OperatorDef& getOpDef(const repr::NeuralNetOperator& nnOp) {
auto annotation = nnOp.getAnnotation();
if (annotation == nullptr) {
CAFFE_THROW("Cannot get Operator annotation");
}
return dyn_cast<Caffe2Annotation>(annotation)->getOperatorDef();
}
caffe2::OperatorDef* getMutableOpDef(repr::NeuralNetOperator& nnOp) {
auto annotation = nnOp.getMutableAnnotation();
if (annotation == nullptr) {
CAFFE_THROW("Cannot get Operator annotation");
}
return dyn_cast<Caffe2Annotation>(annotation)->getMutableOperatorDef();
}
bool isOpType(const repr::NNGraph::NodeRef& nodeRef, string typeName) {
if (!repr::nn::is<repr::NeuralNetOperator>(nodeRef)) {
return false;
}
auto op = repr::nn::get<repr::NeuralNetOperator>(nodeRef);
// NOLINTNEXTLINE(performance-unnecessary-copy-initialization)
auto opDef = getOpDef(*op);
return opDef.type() == typeName;
}
bool isOnIdeepDevice(const repr::NeuralNetOperator& nnOp) {
// We only want to fuse for IDEEP operators
const auto& op = getOpDef(nnOp);
return op.device_option().device_type() == DeviceTypeProto::PROTO_IDEEP;
}
bool isConvFusion(repr::NNGraph::NodeRef convNode, int fusion_type) {
// Here we only check the type of ConvFusion op (for FP32 only)
if (!repr::nn::is<repr::Conv>(convNode)) {
return false;
}
auto conv = repr::nn::get<repr::Conv>(convNode);
auto& op = getOpDef(*conv);
if (op.type() == "ConvFusion") {
for (const auto& arg : op.arg()) {
if (arg.name() == "fusion_type") {
if (fusion_type == FUSION_MAX) {
return true;
}
return arg.i() == fusion_type;
}
}
}
return false;
}
void resetConvForFusion(repr::NNGraph::NodeRef convNode, int fusion_type) {
auto conv = repr::nn::get<repr::Conv>(convNode);
auto* op = getMutableOpDef(*conv);
if (op == nullptr) {
return;
}
if (op->type() == "ConvFusion") {
CAFFE_ENFORCE(fusion_type == FUSION_CONV_RELU, "Invalid nest fusion");
for (auto& arg : *op->mutable_arg()) {
if (arg.name() == "fusion_type") {
CAFFE_ENFORCE(arg.i() == FUSION_CONV_SUM, "Invalid nest fusion");
// Only from FUSION_CONV_SUM to FUSION_CONV_SUM_RELU
arg.set_i(FUSION_CONV_SUM_RELU);
return;
}
}
CAFFE_THROW("Can not find fusion type in ConvFusion");
}
CAFFE_ENFORCE_LT(fusion_type, FUSION_CONV_SUM_RELU, "Invalid fusion type");
op->set_type("ConvFusion");
auto* arg = op->add_arg();
arg->set_name("fusion_type");
arg->set_i(fusion_type);
}
void removeArg(repr::NeuralNetOperator& nnOp, std::string argName) {
auto* op = getMutableOpDef(nnOp);
auto& opArgs = *op->mutable_arg();
auto remove_arg = [](decltype(opArgs)& args, std::string& name) {
for (auto it = args.begin(); it != args.end(); it++) {
if (it->name() == name) {
args.erase(it);
return true;
}
}
return false;
};
while (remove_arg(opArgs, argName))
;
}
void moveOpArg(
caffe2::Workspace* ws,
std::string argName,
repr::NeuralNetOperator* srcOp,
repr::NeuralNetOperator* dstOp) {
if (argName.empty() || srcOp == nullptr || dstOp == nullptr || srcOp == dstOp)
return;
removeArg(*dstOp, argName);
auto& src = getOpDef(*srcOp);
auto& src_args = src.arg();
auto src_it = src_args.begin();
for (; src_it != src_args.end(); src_it++) {
if (src_it->name() == argName)
break;
}
if (src_it == src_args.end())
return;
auto* dst = getMutableOpDef(*dstOp);
auto* arg = dst->add_arg();
*arg = *src_it;
arg->set_name(argName);
}
bool removeStopGradientForInference(repr::NNModule* nn, caffe2::Workspace* ws) {
auto allNodes = nn->dataFlow.getMutableNodes();
// NOLINTNEXTLINE(modernize-loop-convert,clang-diagnostic-sign-compare)
for (int i = 0; i < allNodes.size(); ++i) {
auto node = allNodes[i];
if (!isOpType(node, "StopGradient")) {
continue;
}
auto stopGradInput = repr::nn::getInputs(node).front();
auto stopGradOutput = repr::nn::getOutputs(node).front();
auto inputName = repr::nn::get<repr::Tensor>(stopGradInput)->getName();
auto outputName = repr::nn::get<repr::Tensor>(stopGradOutput)->getName();
if (inputName == outputName) {
nn->dataFlow.replaceNode(stopGradOutput, stopGradInput);
nn->dataFlow.deleteNode(node);
return true;
}
}
return false;
}
bool fuseConvBNAndAffCh(repr::NNModule* nn, caffe2::Workspace* ws) {
for (auto node_pair : repr::nn::dataIterator<repr::Conv>(nn->dataFlow)) {
bool no_bias = false;
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
repr::NNGraph::NodeRef convNode;
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
repr::Conv* conv;
std::tie(conv, convNode) = node_pair;
if (!isOnIdeepDevice(*conv)) {
LOG(WARNING) << "Not a IDEEP operator";
continue;
}
const auto& convOp = getOpDef(*conv);
if (convOp.type() == "ConvFusion") {
continue;
}
auto convOutput = repr::nn::getOutputs(convNode).front();
auto consumers = repr::nn::getConsumers(convOutput);
// convOutput is NOT referenced by sequential ops after BN.
if (consumers.size() != 1) {
continue;
}
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
bool isBN;
auto consumer = consumers.front();
if (repr::nn::is<repr::BatchNormalization>(consumer)) {
isBN = true;
} else if (isOpType(consumer, "AffineChannel")) {
isBN = false;
} else {
continue;
}
auto bnOrAffChNode = consumer;
auto bn =
isBN ? repr::nn::get<repr::BatchNormalization>(bnOrAffChNode) : nullptr;
auto bnOrAffChOutput = repr::nn::getOutputs(bnOrAffChNode).front();
auto convInputs = repr::nn::getInputs(convNode);
if (convInputs.size() < 2) {
LOG(WARNING) << "Invalid convolution input size";
continue;
}
auto bnOrAffChInputs = repr::nn::getInputs(bnOrAffChNode);
int numInputs = isBN ? 5 : 3;
// NOLINTNEXTLINE(clang-diagnostic-sign-compare)
if (bnOrAffChInputs.size() < numInputs) {
LOG(WARNING) << "Invalid input size: " << bnOrAffChInputs.size()
<< ", expect " << numInputs;
continue;
}
// When no bias, borrow BN bias
if (convInputs.size() < 3) {
no_bias = true;
nn->dataFlow.createEdge(bnOrAffChInputs[2], convNode);
convInputs = repr::nn::getInputs(convNode);
}
#define EXPOSE_TENSOR_DATA(name, index, nodes, need_init) \
itensor* name = nullptr; \
itensor name##Tensor; \
float* name##Data = nullptr; \
if (need_init) { \
name = getMutableTensor<itensor>(getBlob(nodes[index], ws)); \
if (name == nullptr) { \
LOG(WARNING) << #name " not a IDEEP tensor"; \
continue; \
} \
name##Tensor.resize(name->get_dims(), name->get_data_type()); \
name##Tensor.feed_from(*name); \
CAFFE_ENFORCE( \
name##Tensor.is_public_format(), #name " not with public format"); \
name##Data = static_cast<float*>(name##Tensor.get_data_handle()); \
}
EXPOSE_TENSOR_DATA(filter, 1, convInputs, true);
EXPOSE_TENSOR_DATA(biasConv, 2, convInputs, true);
EXPOSE_TENSOR_DATA(scale, 1, bnOrAffChInputs, true);
EXPOSE_TENSOR_DATA(biasBNOrAffCh, 2, bnOrAffChInputs, true);
EXPOSE_TENSOR_DATA(mean, 3, bnOrAffChInputs, isBN);
EXPOSE_TENSOR_DATA(variance, 4, bnOrAffChInputs, isBN);
#undef EXPOSE_TENSOR_DATA
// Assume M{CHW,HWC}
auto chwDim = filterTensor.get_dim(1) * filterTensor.get_dim(2) *
filterTensor.get_dim(3);
for (auto c = 0; c < filterTensor.get_dim(0); ++c) {
float mean_val = 0;
float variance_val = 1;
if (isBN) {
mean_val = meanData[c];
variance_val = std::sqrt(varianceData[c] + bn->getEpsilon());
}
float coeff = scaleData[c] / variance_val;
for (auto i = 0; i < chwDim; ++i) {
filterData[c * chwDim + i] *= coeff;
}
if (no_bias) {
biasConvData[c] = biasBNOrAffChData[c] - mean_val * coeff;
} else {
biasConvData[c] =
biasBNOrAffChData[c] + (biasConvData[c] - mean_val) * coeff;
}
}
filter->feed_from(filterTensor);
biasConv->feed_from(biasConvTensor);
nn->dataFlow.replaceNode(convOutput, bnOrAffChOutput);
nn->dataFlow.deleteNode(bnOrAffChNode);
nn->dataFlow.deleteNode(convOutput);
return true;
}
return false;
}
bool fuseConvSum(repr::NNModule* nn, caffe2::Workspace* ws) {
CAFFE_ENFORCE(cpuinfo_initialize(), "failed to initialize cpuinfo");
// Assume the order of nodes from getMutableNodes conforms to
// the original topo order of operators
auto allNodes = nn->dataFlow.getMutableNodes();
// NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-narrowing-conversions)
for (int i = allNodes.size() - 1; i > 0; i--) {
auto sumNode = allNodes[i];
if (!repr::nn::hasInputs(sumNode)) {
continue;
}
// [Caution] on IDEEP device, only element-wise Add operator is
// supported yet. It totally works as element-wise sum without scalar
// broadcast.
bool is_dnnlowp_sum = false;
if (isOpType(sumNode, "Int8Sum") || isOpType(sumNode, "Int8Add") ||
isOpType(sumNode, "Int8SumRelu") || isOpType(sumNode, "Int8AddRelu")) {
is_dnnlowp_sum = true;
} else if (!repr::nn::is<repr::Sum>(sumNode) && !isOpType(sumNode, "Add")) {
continue;
}
auto sum = repr::nn::get<repr::NeuralNetOperator>(sumNode);
if (!isOnIdeepDevice(*sum)) {
LOG(WARNING) << "Not a IDEEP operator";
continue;
}
auto sumInputs = repr::nn::getInputs(sumNode);
if (sumInputs.size() != 2) {
continue;
}
int sum_idx = i;
repr::NNGraph::NodeRef convNode = nullptr;
while (--i >= 0) {
if (repr::nn::is<repr::NeuralNetOperator>(allNodes[i])) {
// Find the nearest conv Op before Sum
if (repr::nn::is<repr::Conv>(allNodes[i]) ||
isOpType(allNodes[i], "Int8Conv")) {
convNode = allNodes[i];
break;
}
}
}
if (convNode == nullptr || isConvFusion(convNode, FUSION_MAX)) {
continue;
}
int conv_idx = i;
auto conv = repr::nn::get<repr::NeuralNetOperator>(convNode);
if (!isOnIdeepDevice(*conv)) {
LOG(WARNING) << "Not a IDEEP operator";
continue;
}
auto group = 1;
auto* convOp = getMutableOpDef(*conv);
for (const auto& arg : convOp->arg()) {
if (arg.name() == "group") {
group = arg.i();
break;
}
}
if (group > 1 && !cpuinfo_has_x86_avx512f()) {
LOG(WARNING) << "Not support conv sum fusion with grouped filter";
continue;
}
auto convOutput = repr::nn::getOutputs(convNode).front();
if (convOutput != sumInputs[0] && convOutput != sumInputs[1]) {
continue;
}
repr::NNGraph::NodeRef sumInputX =
(sumInputs[0] == convOutput ? sumInputs[1] : sumInputs[0]);
CAFFE_ENFORCE(sumInputX != nullptr, "Invalid sum inputs");
if (sumInputX->getInEdges().size() <= 0) {
continue;
}
auto preNode = repr::nn::getProducer(sumInputX);
if (preNode == nullptr || !repr::nn::is<repr::NeuralNetOperator>(preNode)) {
LOG(WARNING) << "Can not fuse Conv Sum";
continue;
}
int pre_idx = sum_idx - 1;
while (pre_idx >= 0) {
if (preNode == allNodes[pre_idx]) {
break;
}
pre_idx--;
}
bool should_fuse = true;
auto convInput = repr::nn::getInputs(convNode).front();
// NOLINTNEXTLINE(clang-diagnostic-sign-compare)
for (int idx = conv_idx + 1; idx < allNodes.size() - 1; ++idx) {
if (idx == sum_idx ||
!repr::nn::is<repr::NeuralNetOperator>(allNodes[idx])) {
continue;
}
auto checkNode = allNodes[idx];
auto checkInputs = repr::nn::getInputs(checkNode);
// Conv output should not be used by other ops after Conv node (except the
// fused Sum) The other Sum input (sumInputX) should not be used by the
// other ops after Sum node due to the Sum output is inplace with
// sumInputX
// NOLINTNEXTLINE(modernize-loop-convert)
for (size_t input_idx = 0; input_idx < checkInputs.size(); ++input_idx) {
if (convOutput == checkInputs[input_idx] ||
(idx > sum_idx && sumInputX == checkInputs[input_idx])) {
should_fuse = false;
break;
}
}
if (!should_fuse) {
break;
}
// If fuse Conv with Sum, the Conv op will be pulled down between preNode
// and Sum Check Conv input tensor buffer has been re-written by other ops
// between Conv and preNode
if (idx <= pre_idx) {
auto checkOutputs = repr::nn::getOutputs(checkNode);
// NOLINTNEXTLINE(modernize-loop-convert)
for (size_t output_idx = 0; output_idx < checkOutputs.size();
++output_idx) {
auto check_output_tensor =
repr::nn::get<repr::Tensor>(checkOutputs[output_idx]);
auto conv_input_tensor = repr::nn::get<repr::Tensor>(convInput);
if (conv_input_tensor->getName() == check_output_tensor->getName()) {
should_fuse = false;
break;
}
}
}
if (!should_fuse) {
break;
}
}
if (!should_fuse) {
continue;
}
nn->dataFlow.createEdge(sumInputX, convNode);
auto newOutputName = repr::nn::get<repr::Tensor>(sumInputX)->getName() +
"_fusion_fix_" + std::to_string(i);
auto newInputTensor = std::make_unique<repr::Tensor>(newOutputName);
auto newInput = nn->dataFlow.createNode(
unique_dyn_cast<repr::NeuralNetData>(newInputTensor));
nn->dataFlow.replaceNode(sumInputX, newInput);
nn->dataFlow.deleteNode(sumInputX);
auto newOutputTensor = std::make_unique<repr::Tensor>(newOutputName);
auto newOutput = nn->dataFlow.createNode(
unique_dyn_cast<repr::NeuralNetData>(newOutputTensor));
auto sumOutput = repr::nn::getOutputs(sumNode).front();
nn->dataFlow.replaceNode(sumOutput, newOutput);
nn->dataFlow.createEdge(convNode, newOutput);
if (!is_dnnlowp_sum) {
resetConvForFusion(convNode, FUSION_CONV_SUM);
} else {
moveOpArg(ws, "Y_scale", sum, conv);
moveOpArg(ws, "Y_zero_point", sum, conv);
if (isOpType(sumNode, "Int8Sum") || isOpType(sumNode, "Int8Add")) {
convOp->set_type("Int8ConvSum");
} else if (
isOpType(sumNode, "Int8SumRelu") ||
isOpType(sumNode, "Int8AddRelu")) {
convOp->set_type("Int8ConvSumRelu");
} else {
CAFFE_THROW("Unsupport operator in conv fusion");
}
}
nn->dataFlow.deleteNode(sumNode);
nn->dataFlow.deleteNode(sumOutput);
nn->dataFlow.deleteNode(convOutput);
return true;
}
return false;
}
bool fuseActivation(repr::NNModule* nn, caffe2::Workspace* ws) {
// Conv+Relu fusion
for (auto node_pair : repr::nn::dataIterator<repr::Conv>(nn->dataFlow)) {
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
repr::NNGraph::NodeRef conv_node;
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
repr::Conv* conv;
std::tie(conv, conv_node) = node_pair;
// Check topological feasibility
auto conv_outputs = repr::nn::getOutputs(conv_node);
if (conv_outputs.size() != 1) {
continue;
}
auto conv_output = conv_outputs.front();
auto consumers = repr::nn::getConsumers(conv_output);
if (consumers.size() != 1) {
continue;
}
if (!repr::nn::is<repr::Relu>(consumers.front())) {
continue;
}
auto relu_node = consumers.front();
auto relu_outputs = repr::nn::getOutputs(relu_node);
if (relu_outputs.size() != 1) {
continue;
}
// Check feasibility with application specific logic
if (!isOnIdeepDevice(*conv)) {
continue;
}
// Ready to fuse
auto relu_output = relu_outputs.front();
auto output_tensor = repr::nn::get<repr::Tensor>(relu_output);
auto output_node = relu_output;
auto input_tensor =
repr::nn::get<repr::Tensor>(repr::nn::getInputs(conv_node).front());
if (isConvFusion(conv_node, FUSION_CONV_SUM)) {
nn->dataFlow.replaceNode(relu_output, conv_output);
nn->dataFlow.deleteNode(relu_node);
nn->dataFlow.deleteNode(relu_output);
} else {
// Conv cannot be in-place
if (output_tensor->getName() != input_tensor->getName()) {
nn->dataFlow.replaceNode(conv_output, relu_output);
nn->dataFlow.deleteNode(relu_node);
nn->dataFlow.deleteNode(conv_output);
} else {
nn->dataFlow.replaceNode(relu_output, conv_output);
output_tensor = repr::nn::get<repr::Tensor>(conv_output);
output_node = conv_output;
nn->dataFlow.deleteNode(relu_node);
nn->dataFlow.deleteNode(relu_output);
}
// We may have accidentally made the next op in-place
// In future iterations of transformations this won't be an issue,
// but current caffe2 predictor usage requires things like
// external_input and output to be unchanged.
bool rectify_inplace = false;
for (auto& consumer : repr::nn::getConsumers(output_node)) {
for (auto& consumer_output : repr::nn::getOutputs(consumer)) {
auto co_name =
repr::nn::get<repr::Tensor>(consumer_output)->getName();
if (co_name == output_tensor->getName()) {
rectify_inplace = true;
}
}
}
if (rectify_inplace) {
auto new_output = nn->dataFlow.createNode(make_unique<repr::Tensor>(
output_tensor->getName() + "_fusion_fix"));
nn->dataFlow.replaceNode(output_node, new_output);
}
}
resetConvForFusion(conv_node, FUSION_CONV_RELU);
return true;
}
return false;
}
bool enforceFusionInplace(repr::NNModule* nn, caffe2::Workspace* ws) {
// For fusions of Conv+Sum or Conv+Sum+ReLU, the last input and output must
// be inplaced. To enforce inplace, here to re-check whole graph and correct
// the ConvFusion Ops.
auto allNodes = nn->dataFlow.getMutableNodes();
// NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-narrowing-conversions)
for (int i = allNodes.size() - 1; i > 0; i--) {
auto convNode = allNodes[i];
if (convNode == nullptr ||
!repr::nn::is<repr::NeuralNetOperator>(convNode)) {
continue;
}
auto conv = repr::nn::get<repr::NeuralNetOperator>(convNode);
if (!isOnIdeepDevice(*conv)) {
LOG(WARNING) << "Not a IDEEP operator";
continue;
}
if (repr::nn::is<repr::Conv>(convNode)) {
if (!isConvFusion(convNode, FUSION_CONV_SUM) &&
!isConvFusion(convNode, FUSION_CONV_SUM_RELU))
continue;
} else if (
!isOpType(convNode, "Int8ConvSum") &&
!isOpType(convNode, "Int8ConvSumRelu")) {
continue;
}
auto convInput = repr::nn::getInputs(convNode).back();
auto inputName = repr::nn::get<repr::Tensor>(convInput)->getName();
auto convOutput = repr::nn::getOutputs(convNode).front();
auto outputName = repr::nn::get<repr::Tensor>(convOutput)->getName();
if (inputName == outputName) {
continue;
}
auto consumer = repr::nn::getConsumers(convInput).back();
if (consumer != convNode) {
LOG(ERROR) << "Can not enforce to inplace for fusion";
return false;
}
auto newOutputTensor = std::make_unique<repr::Tensor>(inputName);
auto newOutput = nn->dataFlow.createNode(
unique_dyn_cast<repr::NeuralNetData>(newOutputTensor));
nn->dataFlow.replaceNode(convOutput, newOutput);
nn->dataFlow.deleteNode(convOutput);
return true;
}
return false;
}
bool fuseOrderSwitchToQuantizeOp(repr::NNModule* nn, caffe2::Workspace* ws) {
// In INT8 module, the quantize/dequantize op always appears
// along with corresponding order switch op, which aims to switch
// between INT8 computation domain and others.
// Here we assume they always obey below combination and order:
// NCHW2NHWC followed by Int8Quantize, or Int8Dequantize followed by NHWC2NCHW
// On iDEEP, there is chance to fuse the order switch op into the
// quantize/dequantize op, in order to improve the module performance.
auto allNodes = nn->dataFlow.getMutableNodes();
// NOLINTNEXTLINE(modernize-loop-convert,clang-diagnostic-sign-compare)
for (int i = 0; i < allNodes.size(); ++i) {
auto osNode = allNodes[i];
if (osNode == nullptr || !repr::nn::is<repr::NeuralNetOperator>(osNode)) {
continue;
}
if (isOpType(osNode, "NCHW2NHWC")) {
auto output = repr::nn::getOutputs(osNode).front();
auto consumers = repr::nn::getConsumers(output);
if (consumers.size() != 1) {
continue;
}
auto seqNode = consumers.front();
if (!isOpType(seqNode, "Int8Quantize")) {
continue;
}
auto seq = repr::nn::get<repr::NeuralNetOperator>(seqNode);
removeArg(*seq, "output_order");
auto* seqOp = getMutableOpDef(*seq);
auto* arg = seqOp->add_arg();
arg->set_name("output_order");
arg->set_i(static_cast<int64_t>(iformat::nhwc));
auto input = repr::nn::getInputs(osNode).front();
nn->dataFlow.replaceNode(output, input);
nn->dataFlow.deleteNode(osNode);
nn->dataFlow.deleteNode(output);
return true;
} else if (isOpType(osNode, "NHWC2NCHW")) {
auto input = repr::nn::getInputs(osNode).front();
if (input->getInEdges().size() <= 0) {
continue;
}
auto preNode = repr::nn::getProducer(input);
if (!isOpType(preNode, "Int8Dequantize")) {
continue;
}
auto pre = repr::nn::get<repr::NeuralNetOperator>(preNode);
removeArg(*pre, "output_order");
auto* preOp = getMutableOpDef(*pre);
auto* arg = preOp->add_arg();
arg->set_name("output_order");
arg->set_i(static_cast<int64_t>(iformat::nchw));
auto output = repr::nn::getOutputs(osNode).front();
nn->dataFlow.replaceNode(input, output);
nn->dataFlow.deleteNode(osNode);
nn->dataFlow.deleteNode(input);
return true;
}
}
return false;
}
bool fusePreConvertOp(repr::NNModule* nn, caffe2::Workspace* ws) {
// 1. Int8Sum has been fallbacked to FP32 in current impl
// It can handle inputs with diff format and data type
// 2. FC is able to convert input format and data type by itself
// 3. The fallback wrapper can handle the conversion of format and data type
static vector<string> op_list = {
"FC",
"Python",
"Softmax",
"Sigmoid",
"RoIAlign",
"UpsampleNearest",
"BatchPermutation",
"Int8Sum",
"Int8SumRelu",
};
auto allNodes = nn->dataFlow.getMutableNodes();
// NOLINTNEXTLINE(modernize-loop-convert,clang-diagnostic-sign-compare)
for (int i = 0; i < allNodes.size(); ++i) {
auto opNode = allNodes[i];
if (opNode == nullptr || !repr::nn::is<repr::NeuralNetOperator>(opNode)) {
continue;
}
if (!isOpType(opNode, "NCHW2NHWC") && !isOpType(opNode, "NHWC2NCHW") &&
!isOpType(opNode, "Int8Quantize") &&
!isOpType(opNode, "Int8Dequantize")) {
continue;
}
auto op = repr::nn::get<repr::NeuralNetOperator>(opNode);
if (!isOnIdeepDevice(*op)) {
LOG(WARNING) << "Not a IDEEP operator";
continue;
}
auto output = repr::nn::getOutputs(opNode).front();
auto consumers = repr::nn::getConsumers(output);
if (consumers.size() != 1) {
continue;
}
bool is_op_found = false;
auto seqNode = consumers.front();
// NOLINTNEXTLINE(modernize-loop-convert,clang-diagnostic-sign-compare)
for (int j = 0; j < op_list.size(); j++) {
if (isOpType(seqNode, op_list[j])) {
is_op_found = true;
break;
}
}
if (!is_op_found) {
continue;
}
auto seqOp = repr::nn::get<repr::NeuralNetOperator>(seqNode);
if (!isOnIdeepDevice(*seqOp)) {
LOG(WARNING) << "Not a IDEEP operator";
continue;
}
auto input = repr::nn::getInputs(opNode).front();
if (isOpType(opNode, "Int8Dequantize") &&
repr::nn::hasSingleOutputAndConsumer(opNode)) {
auto preNode = repr::nn::getProducer(input);
if (isOpType(preNode, "Int8FC") &&
repr::nn::hasSingleOutputAndConsumer(preNode)) {
auto predOp = repr::nn::get<repr::NeuralNetOperator>(preNode);
removeArg(*predOp, "Y_scale");
removeArg(*predOp, "Y_zero_point");
}
}
nn->dataFlow.replaceNode(output, input);
nn->dataFlow.deleteNode(opNode);
nn->dataFlow.deleteNode(output);
return true;
}
return false;
}
void setPoolingInferenceMode(repr::NNModule* nn) {
auto setTrainingMode = [](repr::NeuralNetOperator& pool) {
if (!isOnIdeepDevice(pool)) {
LOG(WARNING) << "Not a IDEEP operator";
return;
}
auto* op = getMutableOpDef(pool);
bool found_training_mode = false;
for (auto& arg : *op->mutable_arg()) {
if (arg.name() == "training_mode") {
arg.set_i(0);
found_training_mode = true;
break;
}
}
if (!found_training_mode) {
auto* arg = op->add_arg();
arg->set_name("training_mode");
arg->set_i(0);
}
};
auto allNodes = nn->dataFlow.getMutableNodes();
// NOLINTNEXTLINE(modernize-loop-convert,clang-diagnostic-sign-compare)
for (int i = 0; i < allNodes.size(); ++i) {
auto poolNode = allNodes[i];
if (poolNode == nullptr ||
!repr::nn::is<repr::NeuralNetOperator>(poolNode)) {
continue;
}
if (isOpType(poolNode, "FC") || isOpType(poolNode, "Conv") ||
isOpType(poolNode, "ConvFusion") || isOpType(poolNode, "MaxPool") ||
isOpType(poolNode, "AveragePool") || isOpType(poolNode, "Int8FC") ||
isOpType(poolNode, "Int8Conv") || isOpType(poolNode, "Int8ConvRelu") ||
isOpType(poolNode, "Int8ConvSum") ||
isOpType(poolNode, "Int8ConvSumRelu") ||
isOpType(poolNode, "Int8MaxPool") ||
isOpType(poolNode, "Int8AveragePool")) {
auto pool = repr::nn::get<repr::NeuralNetOperator>(poolNode);
setTrainingMode(*pool);
}
}
}
// Pre-convert filters format to expected one here
// in order to avoid boring conversions during computations
void preConvertFiltersFormat(repr::NNModule* nn, caffe2::Workspace* ws) {
for (auto& node : nn->dataFlow.getMutableNodes()) {
if (!repr::nn::is<repr::ConvTranspose>(node) &&
!repr::nn::is<repr::Conv>(node) && !repr::nn::is<repr::FC>(node)) {
continue;
}
auto* nnOp = repr::nn::get<repr::NeuralNetOperator>(node);
if (!isOnIdeepDevice(*nnOp)) {
LOG(INFO) << "Not a IDEEP operator";
continue;
}
auto inputs = repr::nn::getInputs(node);
if (inputs.size() < 2) {
LOG(WARNING) << "Invalid input size";
continue;
}
auto* filterBlob = getBlob(inputs[1], ws);
auto* filter = getMutableTensor<itensor>(filterBlob);
if (filter == nullptr) {
continue;
}
itensor::descriptor expectedDesc;
if (repr::nn::is<repr::ConvTranspose>(node)) {
if (filter->get_desc().is_iohw())
continue;
auto convTranspose = repr::nn::get<repr::ConvTranspose>(node);
auto initValue = [](vector<int>& v, vector<int> i) {
if (v.empty())
v = i;
};
auto strides = convTranspose->getStrides();
initValue(strides, {1, 1});
auto pads = convTranspose->getPads();
initValue(pads, {0, 0, 0, 0});
auto dataType = filter->get_data_type();
ideep::tensor::dims filter_dims_mkldnn{filter->get_dim(1),
filter->get_dim(0),
filter->get_dim(2),
filter->get_dim(3)};
expectedDesc =
ideep::convolution_transpose_forward::expected_weights_desc(
filter_dims_mkldnn,
dataType,
{strides.begin(), strides.end()},
{pads[0], pads[1]},
{pads[2], pads[3]});
if (filter->get_descriptor() != expectedDesc) {
itensor newFilter;
newFilter.init(expectedDesc);
newFilter.feed_from(*filter);
filterBlob->Reset<itensor>(new itensor(std::move(newFilter)));
}
} else if (repr::nn::is<repr::Conv>(node)) {
auto conv = repr::nn::get<repr::Conv>(node);
auto initValue = [](vector<int>& v, vector<int> i) {
if (v.empty())
v = i;
};
auto strides = conv->getStrides();
initValue(strides, {1, 1});
auto pads = conv->getPads();
initValue(pads, {0, 0, 0, 0});
auto dilations = conv->getDilations();
initValue(dilations, {1, 1});
auto* op = getMutableOpDef(*conv);
auto aalgorithm = ialgo::convolution_direct;
for (auto& arg : *op->mutable_arg()) {
if ((arg.name() == "conv_algorithm") &&
(arg.i() == CONV_ALGORITHM_WINOGRAD)) {
aalgorithm = ialgo::convolution_winograd;
}
}
expectedDesc = ideep::convolution_forward::expected_weights_desc(
filter->get_dims(),
filter->get_data_type(),
{strides.begin(), strides.end()},
{pads[0], pads[1]},
{pads[2], pads[3]},
{dilations.begin(), dilations.end()},
conv->getGroup(),
aalgorithm);
if (filter->get_descriptor() != expectedDesc) {
itensor newFilter;
newFilter.init(expectedDesc);
newFilter.feed_from(*filter);
filterBlob->Reset<itensor>(new itensor(std::move(newFilter)));
}
// convert weights for FC
} else if (repr::nn::is<repr::FC>(node)) {
auto fc = repr::nn::get<repr::FC>(node);
auto axis_w = fc->getAxisW();
if (axis_w != 1) {
auto f_dims = filter->get_dims();
auto f_dim0 = std::accumulate(
f_dims.begin(),
f_dims.begin() + axis_w,
1,
// NOLINTNEXTLINE(modernize-use-transparent-functors)
std::multiplies<itensor::dim_t>());
auto f_dim1 = std::accumulate(
f_dims.begin() + axis_w,
f_dims.end(),
1,
// NOLINTNEXTLINE(modernize-use-transparent-functors)
std::multiplies<itensor::dim_t>());
filter->reshape({f_dim0, f_dim1});
}
expectedDesc = ideep::inner_product_forward::expected_weights_desc(
filter->get_dims());
if (filter->get_descriptor() != expectedDesc) {
itensor newFilter;
newFilter.init(expectedDesc);
newFilter.feed_from(*filter);
filterBlob->Reset<itensor>(new itensor(std::move(newFilter)));
}
}
}
}
// Fusers for ideep to parse the graph and apply operator fusion
using Fuser = bool (*)(repr::NNModule* nn, caffe2::Workspace* ws);
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables,cppcoreguidelines-avoid-c-arrays,modernize-avoid-c-arrays)
static Fuser fusers[] = {
removeStopGradientForInference,
fuseConvBNAndAffCh,
fuseConvSum,
fuseActivation,
enforceFusionInplace,
fuseOrderSwitchToQuantizeOp,
fusePreConvertOp,
};
void OptimizeForMkldnn(
repr::NNModule* nn,
caffe2::Workspace* ws,