Kamil Krzyk - My Road to AI
This is a repository that I have created to track my progress in AI/Data Science related topics in order to organise my knowledge and goals. Purpose of doing this is self-motivation, open source/study material for others, portfolio and TODO list.
Presentation
Where
Date
Slides
Welcome to MOOC era! - My experiences with Deep Learning Foundations Nanodegree at Udacity
Speaker - GDG & Women Techmakers - Machine Learning #3
18.10.2017
Link
Soft introduction into MSE based Linear Regression (part 2 of 'What this Machine Learning is all about?' talk)
Azimo Lunch & Learn
16.11.2017
Link
Advantages of Batch Normalization in Deep Learning
PyData Warsaw, Let’s meet to talk about AI in Bialystok #2
10.04.2018, 01.06.2018
Link
In this section I will focus about digging up relationship and visualising data. I will try to use Machine learning and visualisation methods for problem solving.
Problem
Description
Implementation
Dataset
Creation Date
Last Update
Prediction of Bike Shop Clients Number
Used MLP with 1-layer, mini-batch
Python (numpy, matplotlib)
Bike-Sharing
13.08.2017
13.08.2017
Kaggle - Titanic Disaster survivor prediction
Used Logistic Regression with ~80% accuracy
Python (raw)
Titanic Disaster
19.10.2017
24.10.2017
Problem
Description
Implementation
Dataset
Creation Date
Last Update
Picking best computer game to try
Used K-Means Clusters for visualising top positions
Python (raw)
Kaggle - Video Game Sales
01.10.2017
05.10.2017
In this section I want to show off my knowledge about various AI related algorithms, frameworks, programming languages, libraries and more. Priority is to show how the algorithm works - not to solve complex and ambitious problems. Usually on classical or generated datasets.
Algorithm
Description
Implementation
Dataset
Creation Date
Last Update
Linear Regression
-
Python (raw)
Generated Numbers
18.04.2017
15.09.2017
Ridge Regression
Compared result with Linear Regression
Python (raw)
Generated Numbers
23.09.2017
23.09.2017
Polynomial Regression
Approximating Polynomial of degree 2
Python (raw)
Generated Numbers
08.06.2017
15.09.2017
Polynomial Regression
Approximating Polynomial of degree 3
Python (raw)
Generated Numbers
10.06.2017
15.09.2017
KNN
Manhattan, Euclidean Similarity
Python (raw)
iris
21.07.2017
24.09.2017
PCA
-
Python (raw)
Generated Numbers
01.04.2017
23.09.2017
Naive Bayes
Gaussian Distribution
Python (raw)
Pima Indian Diabetes
02.11.2017
03.11.2017
Net Type
Problem
Description
Implementation
Dataset
Creation Date
Last Update
MLP
Digit Classification
2-layers, mini-batch
Python (raw)
MNIST
19.06.2017
14.08.2017
Algorithm
Description
Implementation
Dataset
Creation Date
Last Update
Linear Regression
-
Python (sklearn)
Generated Numbers
18.04.2017
15.09.2017
Polynomial Regression
Approximating Polynomial of degree 2
Python (sklearn)
Generated Numbers
10.06.2017
15.09.2017
Polynomial Regression
Approximating Polynomial of degree 3
Python (sklearn)
Generated Numbers
10.06.2017
15.09.2017
KNN
Euclidean Similarity
Python (sklearn)
iris
22.07.2017
24.09.2017
Algorithm
Description
Implementation
Dataset
Creation Date
Last Update
Linear Regression
-
Python (Tensorflow)
Generated Numbers
23.09.2017
23.09.2017
Net Type
Problem
Description
Implementation
Dataset
Creation Date
Last Update
MLP
Digit Classification
2-layers, mini-batch, dropout-regularization
Python (Tensorflow)
MNIST
29.06.2017
18.07.2017
MLP
Encrypting data with Autoencoder
1-layer Encoder, 1-layer Decoder, mini-batch
Python (Tensorflow)
MNIST
13.07.2017
13.07.2017
MLP
Digit Classification
tf.layer module, dropout regularization, batch normalization
Python (Tensorflow)
MNIST
16.08.2017
23.08.2017
CNN
10 Classes Color Images Classification
tf.nn module, dropout regularization
Python (Tensorflow)
CIFAR-10
16.08.2017
07.09.2017
CNN
10 Classes Color Images Classification
tf.layer module, dropout regularization
Python (Tensorflow)
CIFAR-10
16.08.2017
09.09.2017
CNN
10 Classes Color Images Classification
tf.layer module, dropout regularization, batch normalization
Python (Tensorflow)
CIFAR-10
19.08.2017
10.09.2017
RNN
Simple Language Translator
In form of my DLFND project for now
Python (Tensorflow)
Small part of French-English corpus
05.05.2017
24.05.2017
RNN
"The Simpsons" Script Generation
In form of my DLFND project for now
Python (Tensorflow)
"The Simpsons" script
06.06.2017
14.07.2017
DCGAN
Generating Human Face Miniatures
DCGAN
Python (Tensorflow)
CelebA
11.09.2017
13.09.2017
Net Type
Problem
Description
Implementation
Dataset
Creation Date
Last Update
MLP
Digit Classification
2-layers, mini-batch, BN
Python (Keras)
MNIST
10.03.2018
10.03.2018
MLP
Clothes Images Classification
2-layers, mini-batch, BN
Python (Keras)
Fashion MNIST
15.04.2018
15.04.2018
MLP
Letters Classification
2-layers, mini-batch, BN
Python (Keras)
EMNIST
24.04.2018
24.04.2018
MLP
Review Sentiment Classification
Bag of Words
Python (Keras)
IMDB Reviews
11.03.2018
11.03.2018
MLP
Boston House Prices Regression
1 layer, mini-batch
Python (Keras)
Boston House Prices
19.04.2018
19.04.2018
CNN
Ten Color Image Classes Classification
VGG15
Python (Keras)
CIFAR10
27.03.2018
27.03.2018
CNN
Letter Classification
32x32x64x64, 512, BN
Python (Keras)
EMNIST
25.03.2018
23.03.2018
CNN
Clothes Images Classification
16x16x32x32, 256x128, BN
Python (Keras)
Fashion MNIST
11.03.2018
11.03.2018
CNN
Digit Classification
16x32x64, 128, BN
Python (Keras)
MNIST
24.03.2018
24.03.2018
RNN
Next Month Prediction
LSTM(128)
Python (Keras)
Month Order
15.04.2018
15.04.2018
RNN
Shakespeare Sonnet's Generation
LSTM(700), LSTM(700)
Python (Keras)
Shakespeare's sonnets
17.04.2018
17.04.2018
Note: Delayed due to 1,5 month long preparations for organising ML/DL workshops.
Title
Link
Jupyter
Publsh Date
Update Date
Coding Deep Learning for Beginners — Start!
Medium
-
12.02.2018
12.02.2018
When I was younger I played a lot of computer games. I still tend to play today a little as a form of relax and to spend time with friends that live far from me. One thing that I have very enjoyed about gaming was gathering trophies. You made an effort to complete list of challenges or get a great score and then looked at list of your achievements with satisfaction. My current self have inherited this habit and as I study on daily basis I like to gather proves that I have done something - to make it more like a game where each topic is a boss that you have to clear on hard mode. Of course what's in your head is most important but if it helps to motivate you, then why not?
Programming languages:
Algorithms:
AI related:
There is a list of sources that I have used (and found helpful in some way) or keep using in order to produce my repo content.