forked from lazyprogrammer/machine_learning_examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutil.py
74 lines (58 loc) · 2.15 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
from __future__ import print_function, division
from builtins import range
# Note: you may need to update your version of future
# sudo pip install -U future
import numpy as np
import pandas as pd
from sklearn.utils import shuffle
from scipy.io import loadmat
def getKaggleMNIST():
# https://www.kaggle.com/c/digit-recognizer
return getMNISTFormat('../large_files/train.csv')
def getKaggleFashionMNIST():
# https://www.kaggle.com/zalando-research/fashionmnist
return getMNISTFormat('../large_files/fashionmnist/fashion-mnist_train.csv')
def getMNISTFormat(path):
# MNIST data:
# column 0 is labels
# column 1-785 is data, with values 0 .. 255
# total size of CSV: (42000, 1, 28, 28)
train = pd.read_csv(path).values.astype(np.float32)
train = shuffle(train)
Xtrain = train[:-1000,1:] / 255.0
Ytrain = train[:-1000,0].astype(np.int32)
Xtest = train[-1000:,1:] / 255.0
Ytest = train[-1000:,0].astype(np.int32)
return Xtrain, Ytrain, Xtest, Ytest
def getKaggleMNIST3D():
Xtrain, Ytrain, Xtest, Ytest = getKaggleMNIST()
Xtrain = Xtrain.reshape(-1, 28, 28, 1)
Xtest = Xtest.reshape(-1, 28, 28, 1)
return Xtrain, Ytrain, Xtest, Ytest
def getKaggleFashionMNIST3D():
Xtrain, Ytrain, Xtest, Ytest = getKaggleFashionMNIST()
Xtrain = Xtrain.reshape(-1, 28, 28, 1)
Xtest = Xtest.reshape(-1, 28, 28, 1)
return Xtrain, Ytrain, Xtest, Ytest
def getCIFAR10():
Xtrain = np.zeros((50000, 32, 32, 3), dtype=np.uint8)
Ytrain = np.zeros(50000, dtype=np.uint8)
# train data
for i in range(5):
fn = 'data_batch_%s.mat' % (i+1)
d = loadmat('../large_files/cifar-10-batches-mat/' + fn)
x = d['data']
y = d['labels'].flatten()
x = x.reshape(10000, 3, 32, 32)
x = np.transpose(x, (0, 2, 3, 1))
Xtrain[i*10000:(i+1)*10000] = x
Ytrain[i*10000:(i+1)*10000] = y
# test data
d = loadmat('../large_files/cifar-10-batches-mat/test_batch.mat')
x = d['data']
y = d['labels'].flatten()
x = x.reshape(10000, 3, 32, 32)
x = np.transpose(x, (0, 2, 3, 1))
Xtest = x
Ytest = y
return Xtrain, Ytrain, Xtest, Ytest