-
Notifications
You must be signed in to change notification settings - Fork 116
/
burgers_equation.rnc
379 lines (364 loc) · 12.1 KB
/
burgers_equation.rnc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
include "spud_base.rnc"
include "adaptivity_options.rnc"
include "diagnostic_algorithms.rnc"
include "input_output.rnc"
include "solvers.rnc"
include "stabilisation.rnc"
include "reduced_model.rnc"
include "mesh_options.rnc"
include "physical_parameters.rnc"
include "prognostic_field_options.rnc"
include "prescribed_field_options.rnc"
include "spatial_discretisation.rnc"
include "temporal_discretisation.rnc"
start =
(
## The root node of the options dictionary.
element burgers_equation {
comment,
## Model output files are named according to the simulation
## name, e.g. [simulation_name]_0.vtu. Non-standard
## characters in the simulation name should be avoided.
element simulation_name {
anystring
},
geometry,
io,
timestepping,
material_phase,
adjoint_options?
}
)
geometry =
(
## Options dealing with the specification of geometry
element geometry {
## Dimension of the problem.
## <b>This can only be set once</b>
element dimension {
element integer_value {
attribute rank {"0"},
("1")
}
},
## The position mesh
element mesh {
attribute name { "CoordinateMesh" },
mesh_info_fromfile
},
## The velocity mesh
element mesh {
attribute name { "VelocityMesh" },
mesh_info_frommesh
},
## Quadrature
element quadrature {
## Quadrature degree
##
## note: this specifies the degree of quadrature,
## not the number of gauss points
element degree {
integer
},
## Surface quadrature degree
##
## note: this specifies the degree of surface
## quadrature not the number of surface gauss points
element surface_degree {
integer
}?
}
}
)
mesh_choice_coordinate =
(
element mesh {
attribute name { "CoordinateMesh" }
}
)
mesh_choice =
(
(
element mesh {
attribute name { "VelocityMesh" }
}|
element mesh {
attribute name { "CoordinateMesh" }
}
)
)
mesh_info_fromfile =
(
## Read mesh from file.
element from_file {
(
## Triangle mesh format.
##
## Enter the base name without the .edge .ele, .face or
## .node extensions, and without process numbers.
element format {
attribute name { "triangle" },
comment
}|
## Read the mesh from a vtu. Note that the mesh will have no
## surface or region IDs.
element format {
attribute name { "vtu" },
comment
}|
## GMSH mesh format
element format {
attribute name { "gmsh" },
comment
}
),
attribute file_name { xsd:string },
from_file_mesh_stat_options,
comment
}
)
mesh_info_frommesh =
(
## Make mesh from existing mesh.
element from_mesh {
mesh_choice_coordinate,
element mesh_shape {
element polynomial_degree {
integer
}?,
element element_type {
element string_value{
"lagrangian"
}
}?
}?,
derived_mesh_stat_options,
comment
}
)
timestepping =
(
## Options dealing with time discretisation
element timestepping {
## Current simulation time. At the start of the simulation this
## is the start time.
element current_time {
real
},
## The time step size. If adaptive time stepping is used
## then this is the initial time step size.
element timestep {
real
},
## Simulation time at which the simulation should end.
element finish_time {
real
},
## Timestep after which the simulation should end.
element final_timestep {
integer
}?,
## Number of non-linear iterations.
##
## Manual suggests 2
element nonlinear_iterations {
integer
}?,
## Indicate that the problem should be considered time-independent.
## The model will pseudo-timestep to convergence, and exit from the
## timestepping loop when the steady state tolerance has been reached.
element steady_state {
### The convergence tolerance, in the L2 norm
element tolerance { real }
}?
}
)
material_phase =
(
## The material phase options
element material_phase {
attribute name { "Fluid" },
element scalar_field {
attribute rank { "0" },
attribute name { "Velocity" },
element prognostic {
element mesh {
attribute name { "VelocityMesh" }
},
## Options dealing with the temporal discretisation of velocity
element temporal_discretisation {
## The degree of implicitness in the timestepping.
## 0 is fully explicit, 1 is implicit, 0.5 is Crank-Nicolson.
## Recommended to be 0.5.
element theta {
real
},
## The relaxation term in the nonlinear iterations at each timestep
## 0 means the previous timestep velocity is used to form the advection operator,
## while 1 means the best guess of the next timestep velocity is used.
## Recommended to be 0.5.
element relaxation {
real
},
## If activated, the time term is removed from the equations. Should be used with theta=1 and relaxation=1.
element remove_time_term { empty }?
}?,
element solver {
linear_solver_options_asym
},
## If activated, the advection term is removed from the equation.
element remove_advection_term { empty }?,
initial_condition_scalar,
boundary_conditions+,
element viscosity { real },
element stat { comment },
adjoint_storage,
element scalar_field {
attribute name { "Source" },
attribute rank { "0" },
element prescribed {
prescribed_scalar_field_no_adapt,
recalculation_options?
}
}?,
# If enabled, save the right hand side of the discrete equations.
element scalar_field {
attribute name { "Rhs" },
attribute rank { "0" },
element diagnostic {
empty
},
adjoint_storage
}?
}
},
## Prescribed or diagnostic scalar fields.
element scalar_field {
attribute rank { "0" },
attribute name { string },
(
element prescribed {
mesh_choice,
prescribed_scalar_field_no_adapt,
recalculation_options?,
adjoint_storage
}|
element diagnostic {
mesh_choice,
diagnostic_scalar_field,
adjoint_storage
}
)
}*
}
)
boundary_conditions =
(
## Boundary conditions
element boundary_conditions {
attribute name { string },
## Surface id
element surface_ids {
integer_vector
},
element type {
attribute name { "dirichlet" },
input_choice_real
}
}
)
prescribed_output_options = empty
prescribed_detector_options = empty
prescribed_scalar_stat_options = empty
discrete_properties_algorithm_scalar = empty
recalculation_options =
(
## Prevent this field from being recalculated at every timestep.
## This is cheaper especially if you are enforcing discrete properties on the field.
element do_not_recalculate {
empty
}
)
diagnostic_scalar_field =
(
scalar_python_diagnostic_algorithm,
element stat { comment },
recalculation_options?
)
adjoint_storage =
(
## Informs the model whether the field should be computed only in the
## forward model, the adjoint model, or in both.
## If /adjoint is not enabled, this has no effect whatsoever.
element adjoint_storage {
(
## Include the field in both the forward and adjoint states.
element exists_in_both {
## If enabled, this element tells the model that this field must be stored
## through time in order to compute the adjoint model.
element record { empty }?
}|
## Include the field only in the forward state.
element exists_in_forward {
## If enabled, this element tells the model that this field must be stored
## through time in order to compute the adjoint model.
element record { empty }?
}|
## Include the field only in the adjoint state.
element exists_in_adjoint {
empty
}
)
}
)
adjoint_options =
## Turn on the solution of the adjoint problem.
## To compute the adjoint you must either specify code for the functional
## or for its derivative. If the derivative is not specified, then
## the independent set perturbation method will be used to approximate
## its derivative.
element adjoint {
## The functional to be computed.
## If the derivative is not specified, then the independent set perturbation
## method will be employed to approximate its derivative.
## FIXME: needs more documentation
element functional {
## Python code for the functional
element algorithm {
attribute name { "functional" },
python_code
}
}?,
## The derivative of the functional. If this is specified, then
## the derivative can be computed exactly and more efficiently than
## if the independent set perturbation method is employed to approximate it.
element functional_derivative {
## Python code for the functional derivative
element algorithm {
attribute name { "functional_derivative" },
python_code
}
}?
}
io =
## Options to do with I/O
element io {
## Dump format
element dump_format { "vtk" },
## Dump period, in timesteps. Defaults to 1
element dump_period_in_timesteps {
element constant { integer }
}?,
(
## The mesh on to which all the fields will be
## interpolated for VTK output.
element output_mesh {
attribute name { "VelocityMesh" }
}|
## The mesh on to which all the fields will be
## interpolated for VTK output.
element output_mesh {
attribute name { xsd:string }
}
)
}