-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfocus_scope.dart
590 lines (554 loc) · 21.2 KB
/
focus_scope.dart
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
// Copyright 2014 The Flutter Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
import 'package:flutter/foundation.dart';
import 'basic.dart';
import 'focus_manager.dart';
import 'framework.dart';
import 'inherited_notifier.dart';
/// A widget that manages a [FocusNode] to allow keyboard focus to be given
/// to this widget and its descendants.
///
/// When the focus is gained or lost, [onFocusChanged] is called.
///
/// For keyboard events, [onKey] is called if [FocusNode.hasFocus] is true for
/// this widget's [focusNode], unless a focused descendant's [onKey] callback
/// returns false when called.
///
/// This widget does not provide any visual indication that the focus has
/// changed. Any desired visual changes should be made when [onFocusChanged] is
/// called.
///
/// To access the [FocusNode] of the nearest ancestor [Focus] widget and
/// establish a relationship that will rebuild the widget when the focus
/// changes, use the [Focus.of] and [FocusScope.of] static methods.
///
/// To access the focused state of the nearest [Focus] widget, use
/// [Focus.hasFocus] from a build method, which also establishes a relationship
/// between the calling widget and the [Focus] widget that will rebuild the
/// calling widget when the focus changes.
///
/// Managing a [FocusNode] means managing its lifecycle, listening for changes
/// in focus, and re-parenting it when needed to keep the focus hierarchy in
/// sync with the widget hierarchy. See [FocusNode] for more information about
/// the details of what node management entails if not using a [Focus] widget.
///
/// To collect a sub-tree of nodes into a group, use a [FocusScope].
///
/// {@tool sample --template=stateful_widget_scaffold}
/// This example shows how to manage focus using the [Focus] and [FocusScope]
/// widgets. See [FocusNode] for a similar example that doesn't use [Focus] or
/// [FocusScope].
///
/// ```dart imports
/// import 'package:flutter/services.dart';
/// ```
///
/// ```dart
/// Color _color = Colors.white;
///
/// bool _handleKeyPress(FocusNode node, RawKeyEvent event) {
/// if (event is RawKeyDownEvent) {
/// print('Focus node ${node.debugLabel} got key event: ${event.logicalKey}');
/// if (event.logicalKey == LogicalKeyboardKey.keyR) {
/// print('Changing color to red.');
/// setState(() {
/// _color = Colors.red;
/// });
/// return true;
/// } else if (event.logicalKey == LogicalKeyboardKey.keyG) {
/// print('Changing color to green.');
/// setState(() {
/// _color = Colors.green;
/// });
/// return true;
/// } else if (event.logicalKey == LogicalKeyboardKey.keyB) {
/// print('Changing color to blue.');
/// setState(() {
/// _color = Colors.blue;
/// });
/// return true;
/// }
/// }
/// return false;
/// }
///
/// @override
/// Widget build(BuildContext context) {
/// final TextTheme textTheme = Theme.of(context).textTheme;
/// return FocusScope(
/// debugLabel: 'Scope',
/// autofocus: true,
/// child: DefaultTextStyle(
/// style: textTheme.headline4,
/// child: Focus(
/// onKey: _handleKeyPress,
/// debugLabel: 'Button',
/// child: Builder(
/// builder: (BuildContext context) {
/// final FocusNode focusNode = Focus.of(context);
/// final bool hasFocus = focusNode.hasFocus;
/// return GestureDetector(
/// onTap: () {
/// if (hasFocus) {
/// focusNode.unfocus();
/// } else {
/// focusNode.requestFocus();
/// }
/// },
/// child: Center(
/// child: Container(
/// width: 400,
/// height: 100,
/// alignment: Alignment.center,
/// color: hasFocus ? _color : Colors.white,
/// child: Text(hasFocus ? "I'm in color! Press R,G,B!" : 'Press to focus'),
/// ),
/// ),
/// );
/// },
/// ),
/// ),
/// ),
/// );
/// }
/// ```
/// {@end-tool}
///
/// See also:
///
/// * [FocusNode], which represents a node in the focus hierarchy and
/// [FocusNode]'s API documentation includes a detailed explanation of its role
/// in the overall focus system.
/// * [FocusScope], a widget that manages a group of focusable widgets using a
/// [FocusScopeNode].
/// * [FocusScopeNode], a node that collects focus nodes into a group for
/// traversal.
/// * [FocusManager], a singleton that manages the primary focus and
/// distributes key events to focused nodes.
/// * [FocusTraversalPolicy], an object used to determine how to move the focus
/// to other nodes.
/// * [DefaultFocusTraversal], a widget used to configure the default focus
/// traversal policy for a widget subtree.
class Focus extends StatefulWidget {
/// Creates a widget that manages a [FocusNode].
///
/// The [child] argument is required and must not be null.
///
/// The [autofocus] argument must not be null.
const Focus({
Key key,
@required this.child,
this.focusNode,
this.autofocus = false,
this.onFocusChange,
this.onKey,
this.debugLabel,
this.canRequestFocus,
this.skipTraversal,
}) : assert(child != null),
assert(autofocus != null),
super(key: key);
/// A debug label for this widget.
///
/// Not used for anything except to be printed in the diagnostic output from
/// [toString] or [toStringDeep]. Also unused if a [focusNode] is provided,
/// since that node can have its own [FocusNode.debugLabel].
///
/// To get a string with the entire tree, call [debugDescribeFocusTree]. To
/// print it to the console call [debugDumpFocusTree].
///
/// Defaults to null.
final String debugLabel;
/// The child widget of this [Focus].
///
/// {@macro flutter.widgets.child}
final Widget child;
/// Handler for keys pressed when this object or one of its children has
/// focus.
///
/// Key events are first given to the [FocusNode] that has primary focus, and
/// if its [onKey] method return false, then they are given to each ancestor
/// node up the focus hierarchy in turn. If an event reaches the root of the
/// hierarchy, it is discarded.
///
/// This is not the way to get text input in the manner of a text field: it
/// leaves out support for input method editors, and doesn't support soft
/// keyboards in general. For text input, consider [TextField],
/// [EditableText], or [CupertinoTextField] instead, which do support these
/// things.
final FocusOnKeyCallback onKey;
/// Handler called when the focus changes.
///
/// Called with true if this widget's node gains focus, and false if it loses
/// focus.
final ValueChanged<bool> onFocusChange;
/// {@template flutter.widgets.Focus.autofocus}
/// True if this widget will be selected as the initial focus when no other
/// node in its scope is currently focused.
///
/// Ideally, there is only one widget with autofocus set in each [FocusScope].
/// If there is more than one widget with autofocus set, then the first one
/// added to the tree will get focus.
///
/// Must not be null. Defaults to false.
/// {@endtemplate}
final bool autofocus;
/// {@template flutter.widgets.Focus.focusNode}
/// An optional focus node to use as the focus node for this widget.
///
/// If one is not supplied, then one will be automatically allocated, owned,
/// and managed by this widget. The widget will be focusable even if a
/// [focusNode] is not supplied. If supplied, the given `focusNode` will be
/// _hosted_ by this widget, but not owned. See [FocusNode] for more
/// information on what being hosted and/or owned implies.
///
/// Supplying a focus node is sometimes useful if an ancestor to this widget
/// wants to control when this widget has the focus. The owner will be
/// responsible for calling [FocusNode.dispose] on the focus node when it is
/// done with it, but this widget will attach/detach and reparent the node
/// when needed.
/// {@endtemplate}
final FocusNode focusNode;
/// Sets the [FocusNode.skipTraversal] flag on the focus node so that it won't
/// be visited by the [FocusTraversalPolicy].
///
/// This is sometimes useful if a Focus widget should receive key events as
/// part of the focus chain, but shouldn't be accessible via focus traversal.
///
/// This is different from [canRequestFocus] because it only implies that the
/// widget can't be reached via traversal, not that it can't be focused. It may
/// still be focused explicitly.
final bool skipTraversal;
/// {@template flutter.widgets.Focus.canRequestFocus}
/// If true, this widget may request the primary focus.
///
/// Defaults to true. Set to false if you want the [FocusNode] this widget
/// manages to do nothing when [requestFocus] is called on it. Does not affect
/// the children of this node, and [FocusNode.hasFocus] can still return true
/// if this node is the ancestor of the primary focus.
///
/// This is different than [skipTraversal] because [skipTraversal] still
/// allows the widget to be focused, just not traversed to.
///
/// Setting [canRequestFocus] to false implies that the widget will also be
/// skipped for traversal purposes.
///
/// See also:
///
/// * [DefaultFocusTraversal], a widget that sets the traversal policy for
/// its descendants.
/// * [FocusTraversalPolicy], a class that can be extended to describe a
/// traversal policy.
/// {@endtemplate}
final bool canRequestFocus;
/// Returns the [focusNode] of the [Focus] that most tightly encloses the
/// given [BuildContext].
///
/// If no [Focus] node is found before reaching the nearest [FocusScope]
/// widget, or there is no [Focus] widget in scope, then this method will
/// throw an exception. To return null instead of throwing, pass true for
/// [nullOk].
///
/// The [context] and [nullOk] arguments must not be null.
static FocusNode of(BuildContext context, { bool nullOk = false, bool scopeOk = false }) {
assert(context != null);
assert(nullOk != null);
assert(scopeOk != null);
final _FocusMarker marker = context.dependOnInheritedWidgetOfExactType<_FocusMarker>();
final FocusNode node = marker?.notifier;
if (node == null) {
if (!nullOk) {
throw FlutterError(
'Focus.of() was called with a context that does not contain a Focus widget.\n'
'No Focus widget ancestor could be found starting from the context that was passed to '
'Focus.of(). This can happen because you are using a widget that looks for a Focus '
'ancestor, and do not have a Focus widget descendant in the nearest FocusScope.\n'
'The context used was:\n'
' $context'
);
}
return null;
}
if (!scopeOk && node is FocusScopeNode) {
if (!nullOk) {
throw FlutterError(
'Focus.of() was called with a context that does not contain a Focus between the given '
'context and the nearest FocusScope widget.\n'
'No Focus ancestor could be found starting from the context that was passed to '
'Focus.of() to the point where it found the nearest FocusScope widget. This can happen '
'because you are using a widget that looks for a Focus ancestor, and do not have a '
'Focus widget ancestor in the current FocusScope.\n'
'The context used was:\n'
' $context'
);
}
return null;
}
return node;
}
/// Returns true if the nearest enclosing [Focus] widget's node is focused.
///
/// A convenience method to allow build methods to write:
/// `Focus.isAt(context)` to get whether or not the nearest [Focus] above them
/// in the widget hierarchy currently has the input focus.
///
/// Returns false if no [Focus] widget is found before reaching the nearest
/// [FocusScope], or if the root of the focus tree is reached without finding
/// a [Focus] widget.
static bool isAt(BuildContext context) => Focus.of(context, nullOk: true)?.hasFocus ?? false;
@override
void debugFillProperties(DiagnosticPropertiesBuilder properties) {
super.debugFillProperties(properties);
properties.add(StringProperty('debugLabel', debugLabel, defaultValue: null));
properties.add(FlagProperty('autofocus', value: autofocus, ifTrue: 'AUTOFOCUS', defaultValue: false));
properties.add(DiagnosticsProperty<FocusNode>('node', focusNode, defaultValue: null));
}
@override
_FocusState createState() => _FocusState();
}
class _FocusState extends State<Focus> {
FocusNode _internalNode;
FocusNode get focusNode => widget.focusNode ?? _internalNode;
bool _hasPrimaryFocus;
bool _canRequestFocus;
bool _didAutofocus = false;
FocusAttachment _focusAttachment;
@override
void initState() {
super.initState();
_initNode();
}
void _initNode() {
if (widget.focusNode == null) {
// Only create a new node if the widget doesn't have one.
// This calls a function instead of just allocating in place because
// _createNode is overridden in _FocusScopeState.
_internalNode ??= _createNode();
}
if (widget.skipTraversal != null) {
focusNode.skipTraversal = widget.skipTraversal;
}
if (widget.canRequestFocus != null) {
focusNode.canRequestFocus = widget.canRequestFocus;
}
_canRequestFocus = focusNode.canRequestFocus;
_hasPrimaryFocus = focusNode.hasPrimaryFocus;
_focusAttachment = focusNode.attach(context, onKey: widget.onKey);
// Add listener even if the _internalNode existed before, since it should
// not be listening now if we're re-using a previous one because it should
// have already removed its listener.
focusNode.addListener(_handleFocusChanged);
}
FocusNode _createNode() {
return FocusNode(
debugLabel: widget.debugLabel,
canRequestFocus: widget.canRequestFocus ?? true,
skipTraversal: widget.skipTraversal ?? false,
);
}
@override
void dispose() {
// Regardless of the node owner, we need to remove it from the tree and stop
// listening to it.
focusNode.removeListener(_handleFocusChanged);
_focusAttachment.detach();
// Don't manage the lifetime of external nodes given to the widget, just the
// internal node.
_internalNode?.dispose();
super.dispose();
}
@override
void didChangeDependencies() {
super.didChangeDependencies();
_focusAttachment?.reparent();
_handleAutofocus();
}
void _handleAutofocus() {
if (!_didAutofocus && widget.autofocus) {
FocusScope.of(context).autofocus(focusNode);
_didAutofocus = true;
}
}
@override
void deactivate() {
super.deactivate();
_didAutofocus = false;
}
@override
void didUpdateWidget(Focus oldWidget) {
super.didUpdateWidget(oldWidget);
assert(() {
// Only update the debug label in debug builds, and only if we own the
// node.
if (oldWidget.debugLabel != widget.debugLabel && _internalNode != null) {
_internalNode.debugLabel = widget.debugLabel;
}
return true;
}());
if (oldWidget.focusNode == widget.focusNode) {
if (widget.skipTraversal != null) {
focusNode.skipTraversal = widget.skipTraversal;
}
if (widget.canRequestFocus != null) {
focusNode.canRequestFocus = widget.canRequestFocus;
}
} else {
_focusAttachment.detach();
focusNode.removeListener(_handleFocusChanged);
_initNode();
}
if (oldWidget.autofocus != widget.autofocus) {
_handleAutofocus();
}
}
void _handleFocusChanged() {
final bool hasPrimaryFocus = focusNode.hasPrimaryFocus;
final bool canRequestFocus = focusNode.canRequestFocus;
if (widget.onFocusChange != null) {
widget.onFocusChange(focusNode.hasFocus);
}
if (_hasPrimaryFocus != hasPrimaryFocus) {
setState(() {
_hasPrimaryFocus = hasPrimaryFocus;
});
}
if (_canRequestFocus != canRequestFocus) {
setState(() {
_canRequestFocus = canRequestFocus;
});
}
}
@override
Widget build(BuildContext context) {
_focusAttachment.reparent();
return _FocusMarker(
node: focusNode,
child: Semantics(
focusable: _canRequestFocus,
focused: _hasPrimaryFocus,
child: widget.child,
),
);
}
}
/// A [FocusScope] is similar to a [Focus], but also serves as a scope for other
/// [Focus]s and [FocusScope]s, grouping them together.
///
/// Like [Focus], [FocusScope] provides an [onFocusChange] as a way to be
/// notified when the focus is given to or removed from this widget.
///
/// The [onKey] argument allows specification of a key event handler that is
/// invoked when this node or one of its children has focus. Keys are handed to
/// the primary focused widget first, and then they propagate through the
/// ancestors of that node, stopping if one of them returns true from [onKey],
/// indicating that it has handled the event.
///
/// A [FocusScope] manages a [FocusScopeNode]. Managing a [FocusScopeNode] means
/// managing its lifecycle, listening for changes in focus, and re-parenting it
/// when the widget hierarchy changes. See [FocusNode] and [FocusScopeNode] for
/// more information about the details of what node management entails if not
/// using a [FocusScope] widget.
///
/// A [DefaultTraversalPolicy] widget provides the [FocusTraversalPolicy] for
/// the [FocusScopeNode]s owned by its descendant widgets. Each [FocusScopeNode]
/// has [FocusNode] descendants. The traversal policy defines what "previous
/// focus", "next focus", and "move focus in this direction" means for them.
///
/// [FocusScopeNode]s remember the last [FocusNode] that was focused within
/// their descendants, and can move that focus to the next/previous node, or a
/// node in a particular direction when the [FocusNode.nextFocus],
/// [FocusNode.previousFocus], or [FocusNode.focusInDirection] are called on a
/// [FocusNode] or [FocusScopeNode].
///
/// To move the focus, use methods on [FocusScopeNode]. For instance, to move
/// the focus to the next node, call `Focus.of(context).nextFocus()`.
///
/// See also:
///
/// * [FocusScopeNode], which represents a scope node in the focus hierarchy.
/// * [FocusNode], which represents a node in the focus hierarchy and has an
/// explanation of the focus system.
/// * [Focus], a widget that manages a [FocusNode] and allows easy access to
/// managing focus without having to manage the node.
/// * [FocusManager], a singleton that manages the focus and distributes key
/// events to focused nodes.
/// * [FocusTraversalPolicy], an object used to determine how to move the focus
/// to other nodes.
/// * [DefaultFocusTraversal], a widget used to configure the default focus
/// traversal policy for a widget subtree.
class FocusScope extends Focus {
/// Creates a widget that manages a [FocusScopeNode].
///
/// The [child] argument is required and must not be null.
///
/// The [autofocus], and [showDecorations] arguments must not be null.
const FocusScope({
Key key,
FocusScopeNode node,
@required Widget child,
bool autofocus = false,
ValueChanged<bool> onFocusChange,
bool canRequestFocus,
bool skipTraversal,
FocusOnKeyCallback onKey,
String debugLabel,
}) : assert(child != null),
assert(autofocus != null),
super(
key: key,
child: child,
focusNode: node,
autofocus: autofocus,
onFocusChange: onFocusChange,
canRequestFocus: canRequestFocus,
skipTraversal: skipTraversal,
onKey: onKey,
debugLabel: debugLabel,
);
/// Returns the [FocusScopeNode] of the [FocusScope] that most tightly
/// encloses the given [context].
///
/// If this node doesn't have a [Focus] widget ancestor, then the
/// [FocusManager.rootScope] is returned.
///
/// The [context] argument must not be null.
static FocusScopeNode of(BuildContext context) {
assert(context != null);
final _FocusMarker marker = context.dependOnInheritedWidgetOfExactType<_FocusMarker>();
return marker?.notifier?.nearestScope ?? context.owner.focusManager.rootScope;
}
@override
_FocusScopeState createState() => _FocusScopeState();
}
class _FocusScopeState extends _FocusState {
@override
FocusScopeNode _createNode() {
return FocusScopeNode(
debugLabel: widget.debugLabel,
canRequestFocus: widget.canRequestFocus ?? true,
skipTraversal: widget.skipTraversal ?? false,
);
}
@override
Widget build(BuildContext context) {
_focusAttachment.reparent();
return Semantics(
explicitChildNodes: true,
child: _FocusMarker(
node: focusNode,
child: widget.child,
),
);
}
}
// The InheritedWidget marker for Focus and FocusScope.
class _FocusMarker extends InheritedNotifier<FocusNode> {
const _FocusMarker({
Key key,
@required FocusNode node,
@required Widget child,
}) : assert(node != null),
assert(child != null),
super(key: key, notifier: node, child: child);
}