forked from Kaggle/docker-python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_catalyst.py
158 lines (135 loc) · 4.79 KB
/
test_catalyst.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import unittest
import collections
import json
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision
import torchvision.transforms as transforms
import catalyst
from catalyst.dl import SupervisedRunner, CheckpointCallback
from catalyst import utils
def _to_categorical(y, num_classes=None, dtype='float32'):
"""
Taken from
github.com/keras-team/keras/blob/master/keras/utils/np_utils.py
Converts a class vector (integers) to binary class matrix.
E.g. for use with categorical_crossentropy.
# Arguments
y: class vector to be converted into a matrix
(integers from 0 to num_classes).
num_classes: total number of classes.
dtype: The data type expected by the input, as a string
(`float32`, `float64`, `int32`...)
# Returns
A binary matrix representation of the input. The classes axis
is placed last.
# Example
```python
# Consider an array of 5 labels out of a set of 3 classes {0, 1, 2}:
> labels
array([0, 2, 1, 2, 0])
# `to_categorical` converts this into a matrix with as many
# columns as there are classes. The number of rows
# stays the same.
> to_categorical(labels)
array([[ 1., 0., 0.],
[ 0., 0., 1.],
[ 0., 1., 0.],
[ 0., 0., 1.],
[ 1., 0., 0.]], dtype=float32)
```
"""
y = np.array(y, dtype='int')
input_shape = y.shape
if input_shape and input_shape[-1] == 1 and len(input_shape) > 1:
input_shape = tuple(input_shape[:-1])
y = y.ravel()
if not num_classes:
num_classes = np.max(y) + 1
n = y.shape[0]
categorical = np.zeros((n, num_classes), dtype=dtype)
categorical[np.arange(n), y] = 1
output_shape = input_shape + (num_classes,)
categorical = np.reshape(categorical, output_shape)
return categorical
class Net(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(1, 20, 5, 1)
self.conv2 = nn.Conv2d(20, 50, 5, 1)
self.fc1 = nn.Linear(4 * 4 * 50, 500)
self.fc2 = nn.Linear(500, 10)
def forward(self, x):
x = F.relu(self.conv1(x))
x = F.max_pool2d(x, 2, 2)
x = F.relu(self.conv2(x))
x = F.max_pool2d(x, 2, 2)
x = x.view(-1, 4 * 4 * 50)
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x
class TestCatalyst(unittest.TestCase):
def test_version(self):
self.assertIsNotNone(catalyst.__version__)
def test_mnist(self):
utils.set_global_seed(42)
x_train = np.random.random((100, 1, 28, 28)).astype(np.float32)
y_train = _to_categorical(
np.random.randint(10, size=(100, 1)),
num_classes=10
).astype(np.float32)
x_valid = np.random.random((20, 1, 28, 28)).astype(np.float32)
y_valid = _to_categorical(
np.random.randint(10, size=(20, 1)),
num_classes=10
).astype(np.float32)
x_train, y_train, x_valid, y_valid = \
list(map(torch.tensor, [x_train, y_train, x_valid, y_valid]))
bs = 32
num_workers = 4
data_transform = transforms.ToTensor()
loaders = collections.OrderedDict()
trainset = torch.utils.data.TensorDataset(x_train, y_train)
trainloader = torch.utils.data.DataLoader(
trainset, batch_size=bs,
shuffle=True, num_workers=num_workers)
validset = torch.utils.data.TensorDataset(x_valid, y_valid)
validloader = torch.utils.data.DataLoader(
validset, batch_size=bs,
shuffle=False, num_workers=num_workers)
loaders["train"] = trainloader
loaders["valid"] = validloader
# experiment setup
num_epochs = 3
logdir = "./logs"
# model, criterion, optimizer
model = Net()
criterion = nn.BCEWithLogitsLoss()
optimizer = torch.optim.Adam(model.parameters())
# model runner
runner = SupervisedRunner()
# model training
runner.train(
model=model,
criterion=criterion,
optimizer=optimizer,
loaders=loaders,
logdir=logdir,
num_epochs=num_epochs,
verbose=False,
callbacks=[CheckpointCallback(
logdir,
topk=3,
save_best=True,
loader_key="valid",
metric_key="loss",
minimize=True)]
)
with open('./logs/model.storage.json') as f:
metrics = json.load(f)
storage = metrics['storage']
self.assertEqual(3, len(storage))
self.assertTrue(storage[0]['metric'] < storage[2]['metric'])
self.assertTrue(storage[0]['metric']< 0.35)