-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinference.py
60 lines (54 loc) · 2.4 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
from transformers import AutoTokenizer,AutoModelForCausalLM
from transformers.generation import GenerationConfig
from peft import AutoPeftModelForCausalLM
import pandas as pd
import csv
import ast
import argparse
import re
# import torch
parser = argparse.ArgumentParser()
parser.add_argument('--model_path', default='Qwen/Qwen-7B-Chat',help='model')
parser.add_argument('--lora_path',default=None,help='lora_path')
parser.add_argument('--data_path',default='benchmark_data.xlsx',help='data_path')
parser.add_argument('--out_path',default='output.csv',help='output_dir')
args = parser.parse_args()
model_path = args.model_path
data_path = args.data_path
out_path = args.out_path
lora_path = args.lora_path
raw_data = pd.read_excel(data_path)
out_answer = []
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
if args.lora_path:
model = AutoPeftModelForCausalLM.from_pretrained(
lora_path, # path to the output directory
device_map="auto",
trust_remote_code=True
).eval()
else:
model = AutoModelForCausalLM.from_pretrained(model_path, device_map="auto", trust_remote_code=True).eval()
# 可指定不同的生成长度、top_p等相关超参
# model.generation_config = GenerationConfig.from_pretrained("Qwen/Qwen-7B-Chat", trust_remote_code=True)
for _,data_item in raw_data.iterrows():
question = data_item['question']
table = data_item['schema']
schema = ast.literal_eval(table)
print(schema)
context = f"你是一个经验丰富的数据分析师。根据数据表结构(schema),你需要将用户的数据查询描述(question)翻译成特定的DSL。\"\"\"schema\"\"\"为数据表结构,包括列名和列的属性,###question###为用户的查询描述。\nInput: schema:\"\"\"{schema}\"\"\"\n---\nquestion:###{question}###"
answer, _ = model.chat(tokenizer, context, history=None)
# ids = tokenizer.encode(context)
# input_ids = torch.LongTensor([ids])
# input_ids = input_ids.to(0)
# out = model.generate(
# input_ids=input_ids,
# max_new_tokens=64,
# #repetition_penalty=1.2,
# #do_sample=True,
# temperature=0.01
# )
#answer = tokenizer.decode(out[0])
print(answer)
out_answer.append(answer)
out = pd.DataFrame({'question':raw_data['question'],'answer':out_answer})
out.to_csv(out_path,index=False,sep='|',encoding='utf_8_sig',quoting=csv.QUOTE_NONE,escapechar='|')