forked from PatrickLib/captcha_recognize
-
Notifications
You must be signed in to change notification settings - Fork 0
/
captcha_recognize.py
108 lines (94 loc) · 3.16 KB
/
captcha_recognize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import sys
import os.path
from datetime import datetime
from PIL import Image
import numpy as np
import tensorflow as tf
from tensorflow.python.platform import gfile
import captcha_model as captcha
import config
IMAGE_WIDTH = config.IMAGE_WIDTH
IMAGE_HEIGHT = config.IMAGE_HEIGHT
CHAR_SETS = config.CHAR_SETS
CLASSES_NUM = config.CLASSES_NUM
CHARS_NUM = config.CHARS_NUM
FLAGS = None
def one_hot_to_texts(recog_result):
texts = []
for i in xrange(recog_result.shape[0]):
index = recog_result[i]
texts.append(''.join([CHAR_SETS[i] for i in index]))
return texts
def input_data(image_dir):
if not gfile.Exists(image_dir):
print(">> Image director '" + image_dir + "' not found.")
return None
extensions = ['jpg', 'JPG', 'jpeg', 'JPEG', 'png', 'PNG']
print(">> Looking for images in '" + image_dir + "'")
file_list = []
for extension in extensions:
file_glob = os.path.join(image_dir, '*.' + extension)
file_list.extend(gfile.Glob(file_glob))
if not file_list:
print(">> No files found in '" + image_dir + "'")
return None
batch_size = len(file_list)
images = np.zeros([batch_size, IMAGE_HEIGHT*IMAGE_WIDTH], dtype='float32')
files = []
i = 0
for file_name in file_list:
image = Image.open(file_name)
image_gray = image.convert('L')
image_resize = image_gray.resize(size=(IMAGE_WIDTH,IMAGE_HEIGHT))
image.close()
input_img = np.array(image_resize, dtype='float32')
input_img = np.multiply(input_img.flatten(), 1./255) - 0.5
images[i,:] = input_img
base_name = os.path.basename(file_name)
files.append(base_name)
i += 1
return images, files
def run_predict():
with tf.Graph().as_default(), tf.device('/cpu:0'):
input_images, input_filenames = input_data(FLAGS.captcha_dir)
images = tf.constant(input_images)
logits = captcha.inference(images, keep_prob=1)
result = captcha.output(logits)
saver = tf.train.Saver()
sess = tf.Session()
saver.restore(sess, tf.train.latest_checkpoint(FLAGS.checkpoint_dir))
print(tf.train.latest_checkpoint(FLAGS.checkpoint_dir))
recog_result = sess.run(result)
sess.close()
text = one_hot_to_texts(recog_result)
total_count = len(input_filenames)
true_count = 0.
for i in range(total_count):
print('image ' + input_filenames[i] + " recognize ----> '" + text[i] + "'")
if text[i] in input_filenames[i]:
true_count += 1
precision = true_count / total_count
print('%s true/total: %d/%d recognize @ 1 = %.3f'
%(datetime.now(), true_count, total_count, precision))
def main(_):
run_predict()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument(
'--checkpoint_dir',
type=str,
default='./captcha_train',
help='Directory where to restore checkpoint.'
)
parser.add_argument(
'--captcha_dir',
type=str,
default='./data/test_data',
help='Directory where to get captcha images.'
)
FLAGS, unparsed = parser.parse_known_args()
tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)