-
Notifications
You must be signed in to change notification settings - Fork 0
/
cont.c
3514 lines (2993 loc) · 101 KB
/
cont.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/**********************************************************************
cont.c -
$Author$
created at: Thu May 23 09:03:43 2007
Copyright (C) 2007 Koichi Sasada
**********************************************************************/
#include "ruby/internal/config.h"
#ifndef _WIN32
#include <unistd.h>
#include <sys/mman.h>
#endif
// On Solaris, madvise() is NOT declared for SUS (XPG4v2) or later,
// but MADV_* macros are defined when __EXTENSIONS__ is defined.
#ifdef NEED_MADVICE_PROTOTYPE_USING_CADDR_T
#include <sys/types.h>
extern int madvise(caddr_t, size_t, int);
#endif
#include COROUTINE_H
#include "eval_intern.h"
#include "internal.h"
#include "internal/cont.h"
#include "internal/thread.h"
#include "internal/error.h"
#include "internal/gc.h"
#include "internal/proc.h"
#include "internal/sanitizers.h"
#include "internal/warnings.h"
#include "ruby/fiber/scheduler.h"
#include "rjit.h"
#include "yjit.h"
#include "vm_core.h"
#include "vm_sync.h"
#include "id_table.h"
#include "ractor_core.h"
static const int DEBUG = 0;
#define RB_PAGE_SIZE (pagesize)
#define RB_PAGE_MASK (~(RB_PAGE_SIZE - 1))
static long pagesize;
static const rb_data_type_t cont_data_type, fiber_data_type;
static VALUE rb_cContinuation;
static VALUE rb_cFiber;
static VALUE rb_eFiberError;
#ifdef RB_EXPERIMENTAL_FIBER_POOL
static VALUE rb_cFiberPool;
#endif
#define CAPTURE_JUST_VALID_VM_STACK 1
// Defined in `coroutine/$arch/Context.h`:
#ifdef COROUTINE_LIMITED_ADDRESS_SPACE
#define FIBER_POOL_ALLOCATION_FREE
#define FIBER_POOL_INITIAL_SIZE 8
#define FIBER_POOL_ALLOCATION_MAXIMUM_SIZE 32
#else
#define FIBER_POOL_INITIAL_SIZE 32
#define FIBER_POOL_ALLOCATION_MAXIMUM_SIZE 1024
#endif
#ifdef RB_EXPERIMENTAL_FIBER_POOL
#define FIBER_POOL_ALLOCATION_FREE
#endif
#define jit_cont_enabled (rb_rjit_enabled || rb_yjit_enabled_p())
enum context_type {
CONTINUATION_CONTEXT = 0,
FIBER_CONTEXT = 1
};
struct cont_saved_vm_stack {
VALUE *ptr;
#ifdef CAPTURE_JUST_VALID_VM_STACK
size_t slen; /* length of stack (head of ec->vm_stack) */
size_t clen; /* length of control frames (tail of ec->vm_stack) */
#endif
};
struct fiber_pool;
// Represents a single stack.
struct fiber_pool_stack {
// A pointer to the memory allocation (lowest address) for the stack.
void * base;
// The current stack pointer, taking into account the direction of the stack.
void * current;
// The size of the stack excluding any guard pages.
size_t size;
// The available stack capacity w.r.t. the current stack offset.
size_t available;
// The pool this stack should be allocated from.
struct fiber_pool * pool;
// If the stack is allocated, the allocation it came from.
struct fiber_pool_allocation * allocation;
};
// A linked list of vacant (unused) stacks.
// This structure is stored in the first page of a stack if it is not in use.
// @sa fiber_pool_vacancy_pointer
struct fiber_pool_vacancy {
// Details about the vacant stack:
struct fiber_pool_stack stack;
// The vacancy linked list.
#ifdef FIBER_POOL_ALLOCATION_FREE
struct fiber_pool_vacancy * previous;
#endif
struct fiber_pool_vacancy * next;
};
// Manages singly linked list of mapped regions of memory which contains 1 more more stack:
//
// base = +-------------------------------+-----------------------+ +
// |VM Stack |VM Stack | | |
// | | | | |
// | | | | |
// +-------------------------------+ | |
// |Machine Stack |Machine Stack | | |
// | | | | |
// | | | | |
// | | | . . . . | | size
// | | | | |
// | | | | |
// | | | | |
// | | | | |
// | | | | |
// +-------------------------------+ | |
// |Guard Page |Guard Page | | |
// +-------------------------------+-----------------------+ v
//
// +------------------------------------------------------->
//
// count
//
struct fiber_pool_allocation {
// A pointer to the memory mapped region.
void * base;
// The size of the individual stacks.
size_t size;
// The stride of individual stacks (including any guard pages or other accounting details).
size_t stride;
// The number of stacks that were allocated.
size_t count;
#ifdef FIBER_POOL_ALLOCATION_FREE
// The number of stacks used in this allocation.
size_t used;
#endif
struct fiber_pool * pool;
// The allocation linked list.
#ifdef FIBER_POOL_ALLOCATION_FREE
struct fiber_pool_allocation * previous;
#endif
struct fiber_pool_allocation * next;
};
// A fiber pool manages vacant stacks to reduce the overhead of creating fibers.
struct fiber_pool {
// A singly-linked list of allocations which contain 1 or more stacks each.
struct fiber_pool_allocation * allocations;
// Free list that provides O(1) stack "allocation".
struct fiber_pool_vacancy * vacancies;
// The size of the stack allocations (excluding any guard page).
size_t size;
// The total number of stacks that have been allocated in this pool.
size_t count;
// The initial number of stacks to allocate.
size_t initial_count;
// Whether to madvise(free) the stack or not.
// If this value is set to 1, the stack will be madvise(free)ed
// (or equivalent), where possible, when it is returned to the pool.
int free_stacks;
// The number of stacks that have been used in this pool.
size_t used;
// The amount to allocate for the vm_stack.
size_t vm_stack_size;
};
// Continuation contexts used by JITs
struct rb_jit_cont {
rb_execution_context_t *ec; // continuation ec
struct rb_jit_cont *prev, *next; // used to form lists
};
// Doubly linked list for enumerating all on-stack ISEQs.
static struct rb_jit_cont *first_jit_cont;
typedef struct rb_context_struct {
enum context_type type;
int argc;
int kw_splat;
VALUE self;
VALUE value;
struct cont_saved_vm_stack saved_vm_stack;
struct {
VALUE *stack;
VALUE *stack_src;
size_t stack_size;
} machine;
rb_execution_context_t saved_ec;
rb_jmpbuf_t jmpbuf;
rb_ensure_entry_t *ensure_array;
struct rb_jit_cont *jit_cont; // Continuation contexts for JITs
} rb_context_t;
/*
* Fiber status:
* [Fiber.new] ------> FIBER_CREATED ----> [Fiber#kill] --> |
* | [Fiber#resume] |
* v |
* +--> FIBER_RESUMED ----> [return] ------> |
* [Fiber#resume] | | [Fiber.yield/transfer] |
* [Fiber#transfer] | v |
* +--- FIBER_SUSPENDED --> [Fiber#kill] --> |
* |
* |
* FIBER_TERMINATED <-------------------+
*/
enum fiber_status {
FIBER_CREATED,
FIBER_RESUMED,
FIBER_SUSPENDED,
FIBER_TERMINATED
};
#define FIBER_CREATED_P(fiber) ((fiber)->status == FIBER_CREATED)
#define FIBER_RESUMED_P(fiber) ((fiber)->status == FIBER_RESUMED)
#define FIBER_SUSPENDED_P(fiber) ((fiber)->status == FIBER_SUSPENDED)
#define FIBER_TERMINATED_P(fiber) ((fiber)->status == FIBER_TERMINATED)
#define FIBER_RUNNABLE_P(fiber) (FIBER_CREATED_P(fiber) || FIBER_SUSPENDED_P(fiber))
struct rb_fiber_struct {
rb_context_t cont;
VALUE first_proc;
struct rb_fiber_struct *prev;
struct rb_fiber_struct *resuming_fiber;
BITFIELD(enum fiber_status, status, 2);
/* Whether the fiber is allowed to implicitly yield. */
unsigned int yielding : 1;
unsigned int blocking : 1;
unsigned int killed : 1;
struct coroutine_context context;
struct fiber_pool_stack stack;
};
static struct fiber_pool shared_fiber_pool = {NULL, NULL, 0, 0, 0, 0};
static ID fiber_initialize_keywords[3] = {0};
/*
* FreeBSD require a first (i.e. addr) argument of mmap(2) is not NULL
* if MAP_STACK is passed.
* https://bugs.freebsd.org/bugzilla/show_bug.cgi?id=158755
*/
#if defined(MAP_STACK) && !defined(__FreeBSD__) && !defined(__FreeBSD_kernel__)
#define FIBER_STACK_FLAGS (MAP_PRIVATE | MAP_ANON | MAP_STACK)
#else
#define FIBER_STACK_FLAGS (MAP_PRIVATE | MAP_ANON)
#endif
#define ERRNOMSG strerror(errno)
// Locates the stack vacancy details for the given stack.
inline static struct fiber_pool_vacancy *
fiber_pool_vacancy_pointer(void * base, size_t size)
{
STACK_GROW_DIR_DETECTION;
return (struct fiber_pool_vacancy *)(
(char*)base + STACK_DIR_UPPER(0, size - RB_PAGE_SIZE)
);
}
#if defined(COROUTINE_SANITIZE_ADDRESS)
// Compute the base pointer for a vacant stack, for the area which can be poisoned.
inline static void *
fiber_pool_stack_poison_base(struct fiber_pool_stack * stack)
{
STACK_GROW_DIR_DETECTION;
return (char*)stack->base + STACK_DIR_UPPER(RB_PAGE_SIZE, 0);
}
// Compute the size of the vacant stack, for the area that can be poisoned.
inline static size_t
fiber_pool_stack_poison_size(struct fiber_pool_stack * stack)
{
return stack->size - RB_PAGE_SIZE;
}
#endif
// Reset the current stack pointer and available size of the given stack.
inline static void
fiber_pool_stack_reset(struct fiber_pool_stack * stack)
{
STACK_GROW_DIR_DETECTION;
stack->current = (char*)stack->base + STACK_DIR_UPPER(0, stack->size);
stack->available = stack->size;
}
// A pointer to the base of the current unused portion of the stack.
inline static void *
fiber_pool_stack_base(struct fiber_pool_stack * stack)
{
STACK_GROW_DIR_DETECTION;
VM_ASSERT(stack->current);
return STACK_DIR_UPPER(stack->current, (char*)stack->current - stack->available);
}
// Allocate some memory from the stack. Used to allocate vm_stack inline with machine stack.
// @sa fiber_initialize_coroutine
inline static void *
fiber_pool_stack_alloca(struct fiber_pool_stack * stack, size_t offset)
{
STACK_GROW_DIR_DETECTION;
if (DEBUG) fprintf(stderr, "fiber_pool_stack_alloca(%p): %"PRIuSIZE"/%"PRIuSIZE"\n", (void*)stack, offset, stack->available);
VM_ASSERT(stack->available >= offset);
// The pointer to the memory being allocated:
void * pointer = STACK_DIR_UPPER(stack->current, (char*)stack->current - offset);
// Move the stack pointer:
stack->current = STACK_DIR_UPPER((char*)stack->current + offset, (char*)stack->current - offset);
stack->available -= offset;
return pointer;
}
// Reset the current stack pointer and available size of the given stack.
inline static void
fiber_pool_vacancy_reset(struct fiber_pool_vacancy * vacancy)
{
fiber_pool_stack_reset(&vacancy->stack);
// Consume one page of the stack because it's used for the vacancy list:
fiber_pool_stack_alloca(&vacancy->stack, RB_PAGE_SIZE);
}
inline static struct fiber_pool_vacancy *
fiber_pool_vacancy_push(struct fiber_pool_vacancy * vacancy, struct fiber_pool_vacancy * head)
{
vacancy->next = head;
#ifdef FIBER_POOL_ALLOCATION_FREE
if (head) {
head->previous = vacancy;
vacancy->previous = NULL;
}
#endif
return vacancy;
}
#ifdef FIBER_POOL_ALLOCATION_FREE
static void
fiber_pool_vacancy_remove(struct fiber_pool_vacancy * vacancy)
{
if (vacancy->next) {
vacancy->next->previous = vacancy->previous;
}
if (vacancy->previous) {
vacancy->previous->next = vacancy->next;
}
else {
// It's the head of the list:
vacancy->stack.pool->vacancies = vacancy->next;
}
}
inline static struct fiber_pool_vacancy *
fiber_pool_vacancy_pop(struct fiber_pool * pool)
{
struct fiber_pool_vacancy * vacancy = pool->vacancies;
if (vacancy) {
fiber_pool_vacancy_remove(vacancy);
}
return vacancy;
}
#else
inline static struct fiber_pool_vacancy *
fiber_pool_vacancy_pop(struct fiber_pool * pool)
{
struct fiber_pool_vacancy * vacancy = pool->vacancies;
if (vacancy) {
pool->vacancies = vacancy->next;
}
return vacancy;
}
#endif
// Initialize the vacant stack. The [base, size] allocation should not include the guard page.
// @param base The pointer to the lowest address of the allocated memory.
// @param size The size of the allocated memory.
inline static struct fiber_pool_vacancy *
fiber_pool_vacancy_initialize(struct fiber_pool * fiber_pool, struct fiber_pool_vacancy * vacancies, void * base, size_t size)
{
struct fiber_pool_vacancy * vacancy = fiber_pool_vacancy_pointer(base, size);
vacancy->stack.base = base;
vacancy->stack.size = size;
fiber_pool_vacancy_reset(vacancy);
vacancy->stack.pool = fiber_pool;
return fiber_pool_vacancy_push(vacancy, vacancies);
}
// Allocate a maximum of count stacks, size given by stride.
// @param count the number of stacks to allocate / were allocated.
// @param stride the size of the individual stacks.
// @return [void *] the allocated memory or NULL if allocation failed.
inline static void *
fiber_pool_allocate_memory(size_t * count, size_t stride)
{
// We use a divide-by-2 strategy to try and allocate memory. We are trying
// to allocate `count` stacks. In normal situation, this won't fail. But
// if we ran out of address space, or we are allocating more memory than
// the system would allow (e.g. overcommit * physical memory + swap), we
// divide count by two and try again. This condition should only be
// encountered in edge cases, but we handle it here gracefully.
while (*count > 1) {
#if defined(_WIN32)
void * base = VirtualAlloc(0, (*count)*stride, MEM_COMMIT, PAGE_READWRITE);
if (!base) {
*count = (*count) >> 1;
}
else {
return base;
}
#else
errno = 0;
void * base = mmap(NULL, (*count)*stride, PROT_READ | PROT_WRITE, FIBER_STACK_FLAGS, -1, 0);
if (base == MAP_FAILED) {
// If the allocation fails, count = count / 2, and try again.
*count = (*count) >> 1;
}
else {
#if defined(MADV_FREE_REUSE)
// On Mac MADV_FREE_REUSE is necessary for the task_info api
// to keep the accounting accurate as possible when a page is marked as reusable
// it can possibly not occurring at first call thus re-iterating if necessary.
while (madvise(base, (*count)*stride, MADV_FREE_REUSE) == -1 && errno == EAGAIN);
#endif
return base;
}
#endif
}
return NULL;
}
// Given an existing fiber pool, expand it by the specified number of stacks.
// @param count the maximum number of stacks to allocate.
// @return the allocated fiber pool.
// @sa fiber_pool_allocation_free
static struct fiber_pool_allocation *
fiber_pool_expand(struct fiber_pool * fiber_pool, size_t count)
{
STACK_GROW_DIR_DETECTION;
size_t size = fiber_pool->size;
size_t stride = size + RB_PAGE_SIZE;
// Allocate the memory required for the stacks:
void * base = fiber_pool_allocate_memory(&count, stride);
if (base == NULL) {
rb_raise(rb_eFiberError, "can't alloc machine stack to fiber (%"PRIuSIZE" x %"PRIuSIZE" bytes): %s", count, size, ERRNOMSG);
}
struct fiber_pool_vacancy * vacancies = fiber_pool->vacancies;
struct fiber_pool_allocation * allocation = RB_ALLOC(struct fiber_pool_allocation);
// Initialize fiber pool allocation:
allocation->base = base;
allocation->size = size;
allocation->stride = stride;
allocation->count = count;
#ifdef FIBER_POOL_ALLOCATION_FREE
allocation->used = 0;
#endif
allocation->pool = fiber_pool;
if (DEBUG) {
fprintf(stderr, "fiber_pool_expand(%"PRIuSIZE"): %p, %"PRIuSIZE"/%"PRIuSIZE" x [%"PRIuSIZE":%"PRIuSIZE"]\n",
count, (void*)fiber_pool, fiber_pool->used, fiber_pool->count, size, fiber_pool->vm_stack_size);
}
// Iterate over all stacks, initializing the vacancy list:
for (size_t i = 0; i < count; i += 1) {
void * base = (char*)allocation->base + (stride * i);
void * page = (char*)base + STACK_DIR_UPPER(size, 0);
#if defined(_WIN32)
DWORD old_protect;
if (!VirtualProtect(page, RB_PAGE_SIZE, PAGE_READWRITE | PAGE_GUARD, &old_protect)) {
VirtualFree(allocation->base, 0, MEM_RELEASE);
rb_raise(rb_eFiberError, "can't set a guard page: %s", ERRNOMSG);
}
#else
if (mprotect(page, RB_PAGE_SIZE, PROT_NONE) < 0) {
munmap(allocation->base, count*stride);
rb_raise(rb_eFiberError, "can't set a guard page: %s", ERRNOMSG);
}
#endif
vacancies = fiber_pool_vacancy_initialize(
fiber_pool, vacancies,
(char*)base + STACK_DIR_UPPER(0, RB_PAGE_SIZE),
size
);
#ifdef FIBER_POOL_ALLOCATION_FREE
vacancies->stack.allocation = allocation;
#endif
}
// Insert the allocation into the head of the pool:
allocation->next = fiber_pool->allocations;
#ifdef FIBER_POOL_ALLOCATION_FREE
if (allocation->next) {
allocation->next->previous = allocation;
}
allocation->previous = NULL;
#endif
fiber_pool->allocations = allocation;
fiber_pool->vacancies = vacancies;
fiber_pool->count += count;
return allocation;
}
// Initialize the specified fiber pool with the given number of stacks.
// @param vm_stack_size The size of the vm stack to allocate.
static void
fiber_pool_initialize(struct fiber_pool * fiber_pool, size_t size, size_t count, size_t vm_stack_size)
{
VM_ASSERT(vm_stack_size < size);
fiber_pool->allocations = NULL;
fiber_pool->vacancies = NULL;
fiber_pool->size = ((size / RB_PAGE_SIZE) + 1) * RB_PAGE_SIZE;
fiber_pool->count = 0;
fiber_pool->initial_count = count;
fiber_pool->free_stacks = 1;
fiber_pool->used = 0;
fiber_pool->vm_stack_size = vm_stack_size;
fiber_pool_expand(fiber_pool, count);
}
#ifdef FIBER_POOL_ALLOCATION_FREE
// Free the list of fiber pool allocations.
static void
fiber_pool_allocation_free(struct fiber_pool_allocation * allocation)
{
STACK_GROW_DIR_DETECTION;
VM_ASSERT(allocation->used == 0);
if (DEBUG) fprintf(stderr, "fiber_pool_allocation_free: %p base=%p count=%"PRIuSIZE"\n", (void*)allocation, allocation->base, allocation->count);
size_t i;
for (i = 0; i < allocation->count; i += 1) {
void * base = (char*)allocation->base + (allocation->stride * i) + STACK_DIR_UPPER(0, RB_PAGE_SIZE);
struct fiber_pool_vacancy * vacancy = fiber_pool_vacancy_pointer(base, allocation->size);
// Pop the vacant stack off the free list:
fiber_pool_vacancy_remove(vacancy);
}
#ifdef _WIN32
VirtualFree(allocation->base, 0, MEM_RELEASE);
#else
munmap(allocation->base, allocation->stride * allocation->count);
#endif
if (allocation->previous) {
allocation->previous->next = allocation->next;
}
else {
// We are the head of the list, so update the pool:
allocation->pool->allocations = allocation->next;
}
if (allocation->next) {
allocation->next->previous = allocation->previous;
}
allocation->pool->count -= allocation->count;
ruby_xfree(allocation);
}
#endif
// Acquire a stack from the given fiber pool. If none are available, allocate more.
static struct fiber_pool_stack
fiber_pool_stack_acquire(struct fiber_pool * fiber_pool)
{
struct fiber_pool_vacancy * vacancy = fiber_pool_vacancy_pop(fiber_pool);
if (DEBUG) fprintf(stderr, "fiber_pool_stack_acquire: %p used=%"PRIuSIZE"\n", (void*)fiber_pool->vacancies, fiber_pool->used);
if (!vacancy) {
const size_t maximum = FIBER_POOL_ALLOCATION_MAXIMUM_SIZE;
const size_t minimum = fiber_pool->initial_count;
size_t count = fiber_pool->count;
if (count > maximum) count = maximum;
if (count < minimum) count = minimum;
fiber_pool_expand(fiber_pool, count);
// The free list should now contain some stacks:
VM_ASSERT(fiber_pool->vacancies);
vacancy = fiber_pool_vacancy_pop(fiber_pool);
}
VM_ASSERT(vacancy);
VM_ASSERT(vacancy->stack.base);
#if defined(COROUTINE_SANITIZE_ADDRESS)
__asan_unpoison_memory_region(fiber_pool_stack_poison_base(&vacancy->stack), fiber_pool_stack_poison_size(&vacancy->stack));
#endif
// Take the top item from the free list:
fiber_pool->used += 1;
#ifdef FIBER_POOL_ALLOCATION_FREE
vacancy->stack.allocation->used += 1;
#endif
fiber_pool_stack_reset(&vacancy->stack);
return vacancy->stack;
}
// We advise the operating system that the stack memory pages are no longer being used.
// This introduce some performance overhead but allows system to relaim memory when there is pressure.
static inline void
fiber_pool_stack_free(struct fiber_pool_stack * stack)
{
void * base = fiber_pool_stack_base(stack);
size_t size = stack->available;
// If this is not true, the vacancy information will almost certainly be destroyed:
VM_ASSERT(size <= (stack->size - RB_PAGE_SIZE));
int advice = stack->pool->free_stacks >> 1;
if (DEBUG) fprintf(stderr, "fiber_pool_stack_free: %p+%"PRIuSIZE" [base=%p, size=%"PRIuSIZE"] advice=%d\n", base, size, stack->base, stack->size, advice);
// The pages being used by the stack can be returned back to the system.
// That doesn't change the page mapping, but it does allow the system to
// reclaim the physical memory.
// Since we no longer care about the data itself, we don't need to page
// out to disk, since that is costly. Not all systems support that, so
// we try our best to select the most efficient implementation.
// In addition, it's actually slightly desirable to not do anything here,
// but that results in higher memory usage.
#ifdef __wasi__
// WebAssembly doesn't support madvise, so we just don't do anything.
#elif VM_CHECK_MODE > 0 && defined(MADV_DONTNEED)
if (!advice) advice = MADV_DONTNEED;
// This immediately discards the pages and the memory is reset to zero.
madvise(base, size, advice);
#elif defined(MADV_FREE_REUSABLE)
if (!advice) advice = MADV_FREE_REUSABLE;
// Darwin / macOS / iOS.
// Acknowledge the kernel down to the task info api we make this
// page reusable for future use.
// As for MADV_FREE_REUSABLE below we ensure in the rare occasions the task was not
// completed at the time of the call to re-iterate.
while (madvise(base, size, advice) == -1 && errno == EAGAIN);
#elif defined(MADV_FREE)
if (!advice) advice = MADV_FREE;
// Recent Linux.
madvise(base, size, advice);
#elif defined(MADV_DONTNEED)
if (!advice) advice = MADV_DONTNEED;
// Old Linux.
madvise(base, size, advice);
#elif defined(POSIX_MADV_DONTNEED)
if (!advice) advice = POSIX_MADV_DONTNEED;
// Solaris?
posix_madvise(base, size, advice);
#elif defined(_WIN32)
VirtualAlloc(base, size, MEM_RESET, PAGE_READWRITE);
// Not available in all versions of Windows.
//DiscardVirtualMemory(base, size);
#endif
#if defined(COROUTINE_SANITIZE_ADDRESS)
__asan_poison_memory_region(fiber_pool_stack_poison_base(stack), fiber_pool_stack_poison_size(stack));
#endif
}
// Release and return a stack to the vacancy list.
static void
fiber_pool_stack_release(struct fiber_pool_stack * stack)
{
struct fiber_pool * pool = stack->pool;
struct fiber_pool_vacancy * vacancy = fiber_pool_vacancy_pointer(stack->base, stack->size);
if (DEBUG) fprintf(stderr, "fiber_pool_stack_release: %p used=%"PRIuSIZE"\n", stack->base, stack->pool->used);
// Copy the stack details into the vacancy area:
vacancy->stack = *stack;
// After this point, be careful about updating/using state in stack, since it's copied to the vacancy area.
// Reset the stack pointers and reserve space for the vacancy data:
fiber_pool_vacancy_reset(vacancy);
// Push the vacancy into the vancancies list:
pool->vacancies = fiber_pool_vacancy_push(vacancy, pool->vacancies);
pool->used -= 1;
#ifdef FIBER_POOL_ALLOCATION_FREE
struct fiber_pool_allocation * allocation = stack->allocation;
allocation->used -= 1;
// Release address space and/or dirty memory:
if (allocation->used == 0) {
fiber_pool_allocation_free(allocation);
}
else if (stack->pool->free_stacks) {
fiber_pool_stack_free(&vacancy->stack);
}
#else
// This is entirely optional, but clears the dirty flag from the stack
// memory, so it won't get swapped to disk when there is memory pressure:
if (stack->pool->free_stacks) {
fiber_pool_stack_free(&vacancy->stack);
}
#endif
}
static inline void
ec_switch(rb_thread_t *th, rb_fiber_t *fiber)
{
rb_execution_context_t *ec = &fiber->cont.saved_ec;
rb_ractor_set_current_ec(th->ractor, th->ec = ec);
// ruby_current_execution_context_ptr = th->ec = ec;
/*
* timer-thread may set trap interrupt on previous th->ec at any time;
* ensure we do not delay (or lose) the trap interrupt handling.
*/
if (th->vm->ractor.main_thread == th &&
rb_signal_buff_size() > 0) {
RUBY_VM_SET_TRAP_INTERRUPT(ec);
}
VM_ASSERT(ec->fiber_ptr->cont.self == 0 || ec->vm_stack != NULL);
}
static inline void
fiber_restore_thread(rb_thread_t *th, rb_fiber_t *fiber)
{
ec_switch(th, fiber);
VM_ASSERT(th->ec->fiber_ptr == fiber);
}
static COROUTINE
fiber_entry(struct coroutine_context * from, struct coroutine_context * to)
{
rb_fiber_t *fiber = to->argument;
#if defined(COROUTINE_SANITIZE_ADDRESS)
// Address sanitizer will copy the previous stack base and stack size into
// the "from" fiber. `coroutine_initialize_main` doesn't generally know the
// stack bounds (base + size). Therefore, the main fiber `stack_base` and
// `stack_size` will be NULL/0. It's specifically important in that case to
// get the (base+size) of the previous fiber and save it, so that later when
// we return to the main coroutine, we don't supply (NULL, 0) to
// __sanitizer_start_switch_fiber which royally messes up the internal state
// of ASAN and causes (sometimes) the following message:
// "WARNING: ASan is ignoring requested __asan_handle_no_return"
__sanitizer_finish_switch_fiber(to->fake_stack, (const void**)&from->stack_base, &from->stack_size);
#endif
rb_thread_t *thread = fiber->cont.saved_ec.thread_ptr;
#ifdef COROUTINE_PTHREAD_CONTEXT
ruby_thread_set_native(thread);
#endif
fiber_restore_thread(thread, fiber);
rb_fiber_start(fiber);
#ifndef COROUTINE_PTHREAD_CONTEXT
VM_UNREACHABLE(fiber_entry);
#endif
}
// Initialize a fiber's coroutine's machine stack and vm stack.
static VALUE *
fiber_initialize_coroutine(rb_fiber_t *fiber, size_t * vm_stack_size)
{
struct fiber_pool * fiber_pool = fiber->stack.pool;
rb_execution_context_t *sec = &fiber->cont.saved_ec;
void * vm_stack = NULL;
VM_ASSERT(fiber_pool != NULL);
fiber->stack = fiber_pool_stack_acquire(fiber_pool);
vm_stack = fiber_pool_stack_alloca(&fiber->stack, fiber_pool->vm_stack_size);
*vm_stack_size = fiber_pool->vm_stack_size;
coroutine_initialize(&fiber->context, fiber_entry, fiber_pool_stack_base(&fiber->stack), fiber->stack.available);
// The stack for this execution context is the one we allocated:
sec->machine.stack_start = fiber->stack.current;
sec->machine.stack_maxsize = fiber->stack.available;
fiber->context.argument = (void*)fiber;
return vm_stack;
}
// Release the stack from the fiber, it's execution context, and return it to
// the fiber pool.
static void
fiber_stack_release(rb_fiber_t * fiber)
{
rb_execution_context_t *ec = &fiber->cont.saved_ec;
if (DEBUG) fprintf(stderr, "fiber_stack_release: %p, stack.base=%p\n", (void*)fiber, fiber->stack.base);
// Return the stack back to the fiber pool if it wasn't already:
if (fiber->stack.base) {
fiber_pool_stack_release(&fiber->stack);
fiber->stack.base = NULL;
}
// The stack is no longer associated with this execution context:
rb_ec_clear_vm_stack(ec);
}
static const char *
fiber_status_name(enum fiber_status s)
{
switch (s) {
case FIBER_CREATED: return "created";
case FIBER_RESUMED: return "resumed";
case FIBER_SUSPENDED: return "suspended";
case FIBER_TERMINATED: return "terminated";
}
VM_UNREACHABLE(fiber_status_name);
return NULL;
}
static void
fiber_verify(const rb_fiber_t *fiber)
{
#if VM_CHECK_MODE > 0
VM_ASSERT(fiber->cont.saved_ec.fiber_ptr == fiber);
switch (fiber->status) {
case FIBER_RESUMED:
VM_ASSERT(fiber->cont.saved_ec.vm_stack != NULL);
break;
case FIBER_SUSPENDED:
VM_ASSERT(fiber->cont.saved_ec.vm_stack != NULL);
break;
case FIBER_CREATED:
case FIBER_TERMINATED:
/* TODO */
break;
default:
VM_UNREACHABLE(fiber_verify);
}
#endif
}
inline static void
fiber_status_set(rb_fiber_t *fiber, enum fiber_status s)
{
// if (DEBUG) fprintf(stderr, "fiber: %p, status: %s -> %s\n", (void *)fiber, fiber_status_name(fiber->status), fiber_status_name(s));
VM_ASSERT(!FIBER_TERMINATED_P(fiber));
VM_ASSERT(fiber->status != s);
fiber_verify(fiber);
fiber->status = s;
}
static rb_context_t *
cont_ptr(VALUE obj)
{
rb_context_t *cont;
TypedData_Get_Struct(obj, rb_context_t, &cont_data_type, cont);
return cont;
}
static rb_fiber_t *
fiber_ptr(VALUE obj)
{
rb_fiber_t *fiber;
TypedData_Get_Struct(obj, rb_fiber_t, &fiber_data_type, fiber);
if (!fiber) rb_raise(rb_eFiberError, "uninitialized fiber");
return fiber;
}
NOINLINE(static VALUE cont_capture(volatile int *volatile stat));
#define THREAD_MUST_BE_RUNNING(th) do { \
if (!(th)->ec->tag) rb_raise(rb_eThreadError, "not running thread"); \
} while (0)
rb_thread_t*
rb_fiber_threadptr(const rb_fiber_t *fiber)
{
return fiber->cont.saved_ec.thread_ptr;
}
static VALUE
cont_thread_value(const rb_context_t *cont)
{
return cont->saved_ec.thread_ptr->self;
}
static void
cont_compact(void *ptr)
{
rb_context_t *cont = ptr;
if (cont->self) {
cont->self = rb_gc_location(cont->self);
}
cont->value = rb_gc_location(cont->value);
rb_execution_context_update(&cont->saved_ec);
}
static void
cont_mark(void *ptr)
{
rb_context_t *cont = ptr;
RUBY_MARK_ENTER("cont");
if (cont->self) {
rb_gc_mark_movable(cont->self);
}
rb_gc_mark_movable(cont->value);