forked from mavlink/qgroundcontrol
-
Notifications
You must be signed in to change notification settings - Fork 0
/
UTM.cpp
421 lines (331 loc) · 12.4 KB
/
UTM.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
// UTM.c
// Original Javascript by Chuck Taylor
// Port to C++ by Alex Hajnal
//
// *** THIS CODE USES 32-BIT FLOATS BY DEFAULT ***
// *** For 64-bit double-precision edit UTM.h: undefine FLOAT_32 and define FLOAT_64
//
// This is a simple port of the code on the Geographic/UTM Coordinate Converter (1) page from Javascript to C++.
// Using this you can easily convert between UTM and WGS84 (latitude and longitude).
// Accuracy seems to be around 50cm (I suspect rounding errors are limiting precision).
// This code is provided as-is and has been minimally tested; enjoy but use at your own risk!
// The license for UTM.cpp and UTM.h is the same as the original Javascript:
// "The C++ source code in UTM.cpp and UTM.h may be copied and reused without restriction."
//
// 1) http://home.hiwaay.net/~taylorc/toolbox/geography/geoutm.html
#include "UTM.h"
// DegToRad
// Converts degrees to radians.
FLOAT DegToRad(FLOAT deg) {
return (deg / 180.0 * pi);
}
// RadToDeg
// Converts radians to degrees.
FLOAT RadToDeg(FLOAT rad) {
return (rad / pi * 180.0);
}
// ArcLengthOfMeridian
// Computes the ellipsoidal distance from the equator to a point at a
// given latitude.
//
// Reference: Hoffmann-Wellenhof, B., Lichtenegger, H., and Collins, J.,
// GPS: Theory and Practice, 3rd ed. New York: Springer-Verlag Wien, 1994.
//
// Inputs:
// phi - Latitude of the point, in radians.
//
// Globals:
// sm_a - Ellipsoid model major axis.
// sm_b - Ellipsoid model minor axis.
//
// Returns:
// The ellipsoidal distance of the point from the equator, in meters.
FLOAT ArcLengthOfMeridian (FLOAT phi) {
FLOAT alpha, beta, gamma, delta, epsilon, n;
FLOAT result;
/* Precalculate n */
n = (sm_a - sm_b) / (sm_a + sm_b);
/* Precalculate alpha */
alpha = ((sm_a + sm_b) / 2.0)
* (1.0 + (POW(n, 2.0) / 4.0) + (POW(n, 4.0) / 64.0));
/* Precalculate beta */
beta = (-3.0 * n / 2.0) + (9.0 * POW(n, 3.0) / 16.0)
+ (-3.0 * POW(n, 5.0) / 32.0);
/* Precalculate gamma */
gamma = (15.0 * POW(n, 2.0) / 16.0)
+ (-15.0 * POW(n, 4.0) / 32.0);
/* Precalculate delta */
delta = (-35.0 * POW(n, 3.0) / 48.0)
+ (105.0 * POW(n, 5.0) / 256.0);
/* Precalculate epsilon */
epsilon = (315.0 * POW(n, 4.0) / 512.0);
/* Now calculate the sum of the series and return */
result = alpha
* (phi + (beta * SIN(2.0 * phi))
+ (gamma * SIN(4.0 * phi))
+ (delta * SIN(6.0 * phi))
+ (epsilon * SIN(8.0 * phi)));
return result;
}
// UTMCentralMeridian
// Determines the central meridian for the given UTM zone.
//
// Inputs:
// zone - An integer value designating the UTM zone, range [1,60].
//
// Returns:
// The central meridian for the given UTM zone, in radians
// Range of the central meridian is the radian equivalent of [-177,+177].
FLOAT UTMCentralMeridian(int zone) {
FLOAT cmeridian;
cmeridian = DegToRad(-183.0 + ((FLOAT)zone * 6.0));
return cmeridian;
}
// FootpointLatitude
//
// Computes the footpoint latitude for use in converting transverse
// Mercator coordinates to ellipsoidal coordinates.
//
// Reference: Hoffmann-Wellenhof, B., Lichtenegger, H., and Collins, J.,
// GPS: Theory and Practice, 3rd ed. New York: Springer-Verlag Wien, 1994.
//
// Inputs:
// y - The UTM northing coordinate, in meters.
//
// Returns:
// The footpoint latitude, in radians.
FLOAT FootpointLatitude(FLOAT y) {
FLOAT y_, alpha_, beta_, gamma_, delta_, epsilon_, n;
FLOAT result;
/* Precalculate n (Eq. 10.18) */
n = (sm_a - sm_b) / (sm_a + sm_b);
/* Precalculate alpha_ (Eq. 10.22) */
/* (Same as alpha in Eq. 10.17) */
alpha_ = ((sm_a + sm_b) / 2.0)
* (1 + (POW(n, 2.0) / 4) + (POW(n, 4.0) / 64));
/* Precalculate y_ (Eq. 10.23) */
y_ = y / alpha_;
/* Precalculate beta_ (Eq. 10.22) */
beta_ = (3.0 * n / 2.0) + (-27.0 * POW(n, 3.0) / 32.0)
+ (269.0 * POW(n, 5.0) / 512.0);
/* Precalculate gamma_ (Eq. 10.22) */
gamma_ = (21.0 * POW(n, 2.0) / 16.0)
+ (-55.0 * POW(n, 4.0) / 32.0);
/* Precalculate delta_ (Eq. 10.22) */
delta_ = (151.0 * POW(n, 3.0) / 96.0)
+ (-417.0 * POW(n, 5.0) / 128.0);
/* Precalculate epsilon_ (Eq. 10.22) */
epsilon_ = (1097.0 * POW(n, 4.0) / 512.0);
/* Now calculate the sum of the series (Eq. 10.21) */
result = y_ + (beta_ * SIN(2.0 * y_))
+ (gamma_ * SIN(4.0 * y_))
+ (delta_ * SIN(6.0 * y_))
+ (epsilon_ * SIN(8.0 * y_));
return result;
}
// MapLatLonToXY
// Converts a latitude/longitude pair to x and y coordinates in the
// Transverse Mercator projection. Note that Transverse Mercator is not
// the same as UTM; a scale factor is required to convert between them.
//
// Reference: Hoffmann-Wellenhof, B., Lichtenegger, H., and Collins, J.,
// GPS: Theory and Practice, 3rd ed. New York: Springer-Verlag Wien, 1994.
//
// Inputs:
// phi - Latitude of the point, in radians.
// lambda - Longitude of the point, in radians.
// lambda0 - Longitude of the central meridian to be used, in radians.
//
// Outputs:
// x - The x coordinate of the computed point.
// y - The y coordinate of the computed point.
//
// Returns:
// The function does not return a value.
void MapLatLonToXY (FLOAT phi, FLOAT lambda, FLOAT lambda0, FLOAT &x, FLOAT &y) {
FLOAT N, nu2, ep2, t, t2, l;
FLOAT l3coef, l4coef, l5coef, l6coef, l7coef, l8coef;
//FLOAT tmp; // Unused
/* Precalculate ep2 */
ep2 = (POW(sm_a, 2.0) - POW(sm_b, 2.0)) / POW(sm_b, 2.0);
/* Precalculate nu2 */
nu2 = ep2 * POW(COS(phi), 2.0);
/* Precalculate N */
N = POW(sm_a, 2.0) / (sm_b * SQRT(1 + nu2));
/* Precalculate t */
t = TAN(phi);
t2 = t * t;
//tmp = (t2 * t2 * t2) - POW(t, 6.0); // Unused
/* Precalculate l */
l = lambda - lambda0;
/* Precalculate coefficients for l**n in the equations below
so a normal human being can read the expressions for easting
and northing
-- l**1 and l**2 have coefficients of 1.0 */
l3coef = 1.0 - t2 + nu2;
l4coef = 5.0 - t2 + 9 * nu2 + 4.0 * (nu2 * nu2);
l5coef = 5.0 - 18.0 * t2 + (t2 * t2) + 14.0 * nu2
- 58.0 * t2 * nu2;
l6coef = 61.0 - 58.0 * t2 + (t2 * t2) + 270.0 * nu2
- 330.0 * t2 * nu2;
l7coef = 61.0 - 479.0 * t2 + 179.0 * (t2 * t2) - (t2 * t2 * t2);
l8coef = 1385.0 - 3111.0 * t2 + 543.0 * (t2 * t2) - (t2 * t2 * t2);
/* Calculate easting (x) */
x = N * COS(phi) * l
+ (N / 6.0 * POW(COS(phi), 3.0) * l3coef * POW(l, 3.0))
+ (N / 120.0 * POW(COS(phi), 5.0) * l5coef * POW(l, 5.0))
+ (N / 5040.0 * POW(COS(phi), 7.0) * l7coef * POW(l, 7.0));
/* Calculate northing (y) */
y = ArcLengthOfMeridian (phi)
+ (t / 2.0 * N * POW(COS(phi), 2.0) * POW(l, 2.0))
+ (t / 24.0 * N * POW(COS(phi), 4.0) * l4coef * POW(l, 4.0))
+ (t / 720.0 * N * POW(COS(phi), 6.0) * l6coef * POW(l, 6.0))
+ (t / 40320.0 * N * POW(COS(phi), 8.0) * l8coef * POW(l, 8.0));
return;
}
// MapXYToLatLon
// Converts x and y coordinates in the Transverse Mercator projection to
// a latitude/longitude pair. Note that Transverse Mercator is not
// the same as UTM; a scale factor is required to convert between them.
//
// Reference: Hoffmann-Wellenhof, B., Lichtenegger, H., and Collins, J.,
// GPS: Theory and Practice, 3rd ed. New York: Springer-Verlag Wien, 1994.
//
// Inputs:
// x - The easting of the point, in meters.
// y - The northing of the point, in meters.
// lambda0 - Longitude of the central meridian to be used, in radians.
//
// Outputs:
// phi - Latitude in radians.
// lambda - Longitude in radians.
//
// Returns:
// The function does not return a value.
//
// Remarks:
// The local variables Nf, nuf2, tf, and tf2 serve the same purpose as
// N, nu2, t, and t2 in MapLatLonToXY, but they are computed with respect
// to the footpoint latitude phif.
//
// x1frac, x2frac, x2poly, x3poly, etc. are to enhance readability and
// to optimize computations.
void MapXYToLatLon (FLOAT x, FLOAT y, FLOAT lambda0, FLOAT& phi, FLOAT& lambda)
{
FLOAT phif, Nf, Nfpow, nuf2, ep2, tf, tf2, tf4, cf;
FLOAT x1frac, x2frac, x3frac, x4frac, x5frac, x6frac, x7frac, x8frac;
FLOAT x2poly, x3poly, x4poly, x5poly, x6poly, x7poly, x8poly;
/* Get the value of phif, the footpoint latitude. */
phif = FootpointLatitude (y);
/* Precalculate ep2 */
ep2 = (POW(sm_a, 2.0) - POW(sm_b, 2.0))
/ POW(sm_b, 2.0);
/* Precalculate cos (phif) */
cf = COS(phif);
/* Precalculate nuf2 */
nuf2 = ep2 * POW(cf, 2.0);
/* Precalculate Nf and initialize Nfpow */
Nf = POW(sm_a, 2.0) / (sm_b * SQRT(1 + nuf2));
Nfpow = Nf;
/* Precalculate tf */
tf = TAN(phif);
tf2 = tf * tf;
tf4 = tf2 * tf2;
/* Precalculate fractional coefficients for x**n in the equations
below to simplify the expressions for latitude and longitude. */
x1frac = 1.0 / (Nfpow * cf);
Nfpow *= Nf; /* now equals Nf**2) */
x2frac = tf / (2.0 * Nfpow);
Nfpow *= Nf; /* now equals Nf**3) */
x3frac = 1.0 / (6.0 * Nfpow * cf);
Nfpow *= Nf; /* now equals Nf**4) */
x4frac = tf / (24.0 * Nfpow);
Nfpow *= Nf; /* now equals Nf**5) */
x5frac = 1.0 / (120.0 * Nfpow * cf);
Nfpow *= Nf; /* now equals Nf**6) */
x6frac = tf / (720.0 * Nfpow);
Nfpow *= Nf; /* now equals Nf**7) */
x7frac = 1.0 / (5040.0 * Nfpow * cf);
Nfpow *= Nf; /* now equals Nf**8) */
x8frac = tf / (40320.0 * Nfpow);
/* Precalculate polynomial coefficients for x**n.
-- x**1 does not have a polynomial coefficient. */
x2poly = -1.0 - nuf2;
x3poly = -1.0 - 2 * tf2 - nuf2;
x4poly = 5.0 + 3.0 * tf2 + 6.0 * nuf2 - 6.0 * tf2 * nuf2
- 3.0 * (nuf2 *nuf2) - 9.0 * tf2 * (nuf2 * nuf2);
x5poly = 5.0 + 28.0 * tf2 + 24.0 * tf4 + 6.0 * nuf2 + 8.0 * tf2 * nuf2;
x6poly = -61.0 - 90.0 * tf2 - 45.0 * tf4 - 107.0 * nuf2
+ 162.0 * tf2 * nuf2;
x7poly = -61.0 - 662.0 * tf2 - 1320.0 * tf4 - 720.0 * (tf4 * tf2);
x8poly = 1385.0 + 3633.0 * tf2 + 4095.0 * tf4 + 1575 * (tf4 * tf2);
/* Calculate latitude */
phi = phif + x2frac * x2poly * (x * x)
+ x4frac * x4poly * POW(x, 4.0)
+ x6frac * x6poly * POW(x, 6.0)
+ x8frac * x8poly * POW(x, 8.0);
/* Calculate longitude */
lambda = lambda0 + x1frac * x
+ x3frac * x3poly * POW(x, 3.0)
+ x5frac * x5poly * POW(x, 5.0)
+ x7frac * x7poly * POW(x, 7.0);
return;
}
// LatLonToUTMXY
// Converts a latitude/longitude pair to x and y coordinates in the
// Universal Transverse Mercator projection.
//
// Inputs:
// lat - Latitude of the point, in radians.
// lon - Longitude of the point, in radians.
// zone - UTM zone to be used for calculating values for x and y.
// If zone is less than 1 or greater than 60, the routine
// will determine the appropriate zone from the value of lon.
//
// Outputs:
// x - The x coordinate (easting) of the computed point. (in meters)
// y - The y coordinate (northing) of the computed point. (in meters)
//
// Returns:
// The UTM zone used for calculating the values of x and y.
int LatLonToUTMXY (FLOAT lat, FLOAT lon, int zone, FLOAT& x, FLOAT& y) {
if ( (zone < 1) || (zone > 60) )
zone = FLOOR((lon + 180.0) / 6) + 1;
MapLatLonToXY (DegToRad(lat), DegToRad(lon), UTMCentralMeridian(zone), x, y);
/* Adjust easting and northing for UTM system. */
x = x * UTMScaleFactor + 500000.0;
y = y * UTMScaleFactor;
if (y < 0.0)
y = y + 10000000.0;
return zone;
}
// UTMXYToLatLon
//
// Converts x and y coordinates in the Universal Transverse Mercator
// projection to a latitude/longitude pair.
//
// Inputs:
// x - The easting of the point, in meters.
// y - The northing of the point, in meters.
// zone - The UTM zone in which the point lies.
// southhemi - True if the point is in the southern hemisphere;
// false otherwise.
//
// Outputs:
// lat - The latitude of the point, in radians.
// lon - The longitude of the point, in radians.
//
// Returns:
// The function does not return a value.
void UTMXYToLatLon (FLOAT x, FLOAT y, int zone, bool southhemi, FLOAT& lat, FLOAT& lon) {
FLOAT cmeridian;
x -= 500000.0;
x /= UTMScaleFactor;
/* If in southern hemisphere, adjust y accordingly. */
if (southhemi)
y -= 10000000.0;
y /= UTMScaleFactor;
cmeridian = UTMCentralMeridian (zone);
MapXYToLatLon (x, y, cmeridian, lat, lon);
return;
}