-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
90 lines (60 loc) · 2.94 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import argparse
import torch
import torch.nn as nn
from torch.multiprocessing import SimpleQueue, Process, Value, Event, Barrier
import random
from gym_robothor.envs.robothor_env import RoboThorEnv, env_generator
from Worker import worker
from Learner import learner
from Model import CAM, Encoder
from utils.RolloutStore import RolloutBuffer
if __name__=='__main__':
parser = argparse.ArgumentParser(description='PyTorch Representation Learning')
parser.add_argument('--epochs', default=100000, type=int, metavar='N', help='number of total epochs to run')
parser.add_argument('--mini-batch', default=256, type=int, metavar='N', help='mini-batch size (default: 256)')
parser.add_argument('--num-workers', type=int, default=1)
parser.add_argument('--steps', type=int, default=2048)
parser.add_argument('--num_iter', type=int, default=10)
parser.add_argument('--model-path', type=str, default=None)
parser.add_argument('--lr', '--learning-rate', default=0.1, type=float, metavar='LR', help='initial learning rate')
parser.add_argument("--seed", type=int, default=1234, metavar='BS', help='input batch size for training (default: 64)')
args = parser.parse_args()
torch.multiprocessing.set_start_method('spawn')
torch.manual_seed(args.seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(args.seed)
random.seed(args.seed)
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
# device = torch.device('cpu')
# get observation dimension
env = RoboThorEnv(config_file="config_files/NavTaskTrain.json", device='cpu')
env.init_pos = {'x':0, 'y':0, 'z':0}
env.init_ori = {'x':0, 'y':0, 'z':0}
env.task.target_id = 'Apple|+01.98|+00.77|-01.75'
env.reset()
obs_dim = env.observation_space['rgb'].shape
env.close()
# Experience buffer
storage = RolloutBuffer(obs_dim, args.steps, args.num_workers)
storage.share_memory()
model = CAM(Encoder).to(device)
# print('>>>>>>>>>>>>>>>>>>>', model)
if args.model_path:
model.load_state_dict(torch.load(args.model_path))
# start multiple procRLEnvesses
ready_to_works = [Event() for _ in range(args.num_workers)]
exit_flag = Value('i', 0)
queue = SimpleQueue()
processes = []
# start workers
for worker_id in range(args.num_workers):
p = Process(target=worker, args=(worker_id, storage, ready_to_works[worker_id], queue, exit_flag))
p.start()
processes.append(p)
# p = Process(target=learner, args=(model, storage, optimizer, criterion, args.mini_batch, args.epochs, args.num_iter, args.num_workers, queue, ready_to_works, exit_flag))
# p.start()
# processes.append(p)
learner(model, storage, args.mini_batch, args.epochs, args.num_iter, args.num_workers, device, queue, ready_to_works, exit_flag)
for p in processes:
print(" >>>>>>>>>>>>>>>>>>>>> process ", p.pid, " joined")
p.join()