-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathBitVectorAllocator.cpp
208 lines (199 loc) · 4.8 KB
/
BitVectorAllocator.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
#include "pch.h"
#include "BitVectorAllocator.h"
static bool isPower2(int n)
{
return n != 0 && ((n - 1) & n) == 0;
}
static int maxlog2(int n)
{
return (int)ceil(log(n) / log(2));
}
static int up2Power2(int n)
{
return 1 << maxlog2(n);
}
class LayeredBitVector
{
public:
LayeredBitVector();
LayeredBitVector(int entryCnt);
~LayeredBitVector();
bool hasMoreFree() const;
void mask(int i, bool b);
int getFreeIdx() const;
private:
vector<int> m_bits;
};
const int INT_LOG2 = maxlog2(sizeof(int)) + 3;
const int INT_BIT_COUNT = sizeof(int) * 8;
LayeredBitVector::LayeredBitVector()
{
}
LayeredBitVector::LayeredBitVector(int entryCnt)
{
assert(isPower2(entryCnt));
int log2 = maxlog2(entryCnt);
assert(log2 >= INT_LOG2);
m_bits.resize(1 << (log2-INT_LOG2 + 1));
}
LayeredBitVector::~LayeredBitVector()
{
if (!m_bits.empty()) assert(m_bits[1] == 0);
}
bool LayeredBitVector::hasMoreFree() const
{
return m_bits[1] != -1;
}
void LayeredBitVector::mask(int i, bool b)
{
int idx = (int)m_bits.size() / 2 + i / INT_BIT_COUNT;
int mask = 1 << (i % INT_BIT_COUNT);
if (b) m_bits[idx] |= mask;
else m_bits[idx] &= ~mask;
while (idx > 1) {
idx /= 2;
m_bits[idx] = m_bits[idx * 2] & m_bits[idx * 2 + 1];
}
}
int LayeredBitVector::getFreeIdx() const
{
assert(hasMoreFree());
int idx = 1;
while (idx < (int)m_bits.size() / 2) {
idx *= 2;
if (m_bits[idx] == -1) ++idx;
}
int bits = m_bits[idx];
char *p = (char*)&bits;
int i = 0;
while (p[i] == -1) ++i;
assert(i < 4);
char cbits = p[i];
for (int j = 0; j < 8; ++j) {
if (((cbits >> j) & 1) == 0) {
return (idx - (int)m_bits.size() / 2) * INT_BIT_COUNT + i * 8 + j;
}
}
assert(0);
return 0;
}
//====================
class BitVectorBlock
{
public:
BitVectorBlock();
BitVectorBlock(int entrySize, int blockSize);
~BitVectorBlock();
void* alloc();
bool free(void *p);
private:
LayeredBitVector m_bitvec;
char *m_block;
int m_blockByteSize;
int m_entrySize, m_blockSize;
};
BitVectorBlock::BitVectorBlock():
m_block(NULL), m_blockByteSize(0), m_entrySize(0), m_blockSize(0)
{
}
BitVectorBlock::BitVectorBlock(int entrySize, int blockSize):
m_bitvec(blockSize), m_entrySize(entrySize), m_blockSize(blockSize)
{
m_blockByteSize = m_entrySize * m_blockSize;
m_block = (char*)malloc(m_blockByteSize);
}
BitVectorBlock::~BitVectorBlock()
{
::free(m_block);
}
void* BitVectorBlock::alloc()
{
if (!m_bitvec.hasMoreFree()) return NULL;
int idx = m_bitvec.getFreeIdx();
m_bitvec.mask(idx, true);
return m_block + idx * m_entrySize;
}
bool BitVectorBlock::free(void *p)
{
int off = int((char*)p - m_block);
if (off < 0 || off >= m_blockByteSize) return false;
int idx = int((char*)p - m_block) / m_entrySize;
m_bitvec.mask(idx, false);
return true;
}
//====================
class SizeNBitVectorAllocator
{
public:
SizeNBitVectorAllocator(int entrySize, int blockSize);
~SizeNBitVectorAllocator();
void* alloc();
void free(void *p);
private:
int m_entrySize, m_blockSize;
vector<BitVectorBlock*> m_blocks;
};
SizeNBitVectorAllocator::SizeNBitVectorAllocator(int entrySize, int blockSize):
m_entrySize(entrySize), m_blockSize(blockSize)
{
}
SizeNBitVectorAllocator::~SizeNBitVectorAllocator()
{
for (auto &block : m_blocks) delete block;
}
void* SizeNBitVectorAllocator::alloc()
{
void *p = NULL;
for (auto &block : m_blocks) if (p = block->alloc()) break;
if (p == NULL) {
m_blocks.push_back(new BitVectorBlock(m_entrySize, m_blockSize));
p = m_blocks.back()->alloc();
}
assert(p != NULL);
return p;
}
void SizeNBitVectorAllocator::free(void *p)
{
bool b = false;
for (auto &block : m_blocks) if (b = block->free(p)) break;
assert(b);
}
//====================
BitVectorAllocator::BitVectorAllocator()
{
int sa[] = {4,8,16,24,32,40,48,64,80,96,128};
for (auto sz : sa) {
m_sizeNs.push_back(sz);
m_sizeNAllocators.push_back(new SizeNBitVectorAllocator(sz, up2Power2((1<<12)/sz)));
}
}
BitVectorAllocator::~BitVectorAllocator()
{
for (auto &p : m_sizeNAllocators) delete p;
}
void* BitVectorAllocator::alloc(int size)
{
size += 1;
auto iter = lower_bound(m_sizeNs.begin(), m_sizeNs.end(), size);
if (iter == m_sizeNs.end()) {
char *p = (char*)::malloc(size);
p[0] = -1;
return p + 1;
}
else {
int idx = int(iter - m_sizeNs.begin());
char *p = (char*)m_sizeNAllocators[idx]->alloc();
p[0] = idx;
return p + 1;
}
}
void BitVectorAllocator::free(void *_p)
{
char *p = (char*)_p;
if (p[-1] == -1) {
::free(p - 1);
}
else {
m_sizeNAllocators[p[-1]]->free(p - 1);
}
}