-
Intro to Python
-
Numpy
- Numpy in 10 Minutes: https://www.youtube.com/watch?v=xECXZ3tyONo&ab_channel=PythonProgrammer
- All in One Article(No Self Promo): https://copyassignment.com/numpy-for-machine-learning-a-complete-guide/
- Docs Padho
-
Pandas
- All in One Article(No Self Promo): https://copyassignment.com/python-pandas-tutorial-complete-introduction/
- Pandas in 10 Minutes: https://www.youtube.com/watch?v=iGFdh6_FePU&ab_channel=PythonProgrammerPythonProgrammer
- Docs Padho
-
Scipy
-
Matplotlib
- All in One Article(No Self Promo): https://copyassignment.com/matplotlib-python-a-beginners-walkthrough/
- Quick Intro to Matplotlib: https://www.youtube.com/watch?v=nzKy9GY12yo&ab_channel=blondiebytes
- Docs Padho
-
Seaborn
- All in One Article(No Self Promo): https://copyassignment.com/seaborn-create-elegant-plots/
- Article at TDS: https://towardsdatascience.com/data-visualization-using-seaborn-fc24db95a850
- Docs Padho
-
Miscellaneous
- SQL Intro Course: https://www.khanacademy.org/computing/computer-programming/sql
- SQL Micro Course: https://www.kaggle.com/learn/advanced-sql
- Intro to ML: https://copyassignment.com/machine-learning-a-gentle-introduction/
-
Linear Regression
- Working and Intuition
- OLS Article(No Self Promo): https://copyassignment.com/linear-regression-machine-learning/
- LR Video(Statquest): https://www.youtube.com/watch?v=nk2CQITm_eo
- Multiple Regression: https://www.youtube.com/watch?v=zITIFTsivN8
- Variants
- Polynomial Regression: https://www.youtube.com/watch?v=QptI-vDle8Y
- L1 Regularization(Lasso): https://www.youtube.com/watch?v=NGf0voTMlcs
- L2 Regularization(Ridge): https://www.youtube.com/watch?v=Q81RR3yKn30
- L1+L2 Regularization(ElasticNet): https://www.youtube.com/watch?v=1dKRdX9bfIo
- Working and Intuition
-
Gradient Descent
- Article(No Self Promo): https://copyassignment.com/gradient-descent-linear-regression/
- Video: https://www.youtube.com/watch?v=sDv4f4s2SB8
- SGD Clearly Explained: https://www.youtube.com/watch?v=vMh0zPT0tLI
- Video: https://www.youtube.com/watch?v=1j4bERmqmOU
- GD with Momentum: https://www.youtube.com/watch?v=G9dUDHktfXI
- GD Variants: https://www.analyticsvidhya.com/blog/2021/03/variants-of-gradient-descent-algorithm/
-
Logistic Regression
- Article(No Self Promo): https://copyassignment.com/logistic-regression-machine-learning/
- Statquest: https://www.youtube.com/watch?v=yIYKR4sgzI8
- Andrew Ng Part 1: https://www.youtube.com/watch?v=-la3q9d7AKQ
- Andrew Ng Part 2: https://www.youtube.com/watch?v=t1IT5hZfS48
-
Decision Trees
- Article(No Self Promo): https://copyassignment.com/decision-tree-machine-learning/
- DT from Scratch: https://www.youtube.com/watch?v=LDRbO9a6XPU
- Statquest: https://www.youtube.com/watch?v=_L39rN6gz7Y
-
Random Forest
- Article(No Self Promo): https://copyassignment.com/random-forest-machine-learning/
- Bagging: https://www.youtube.com/watch?v=2Mg8QD0F1dQ
- RF Article: https://towardsdatascience.com/understanding-random-forest-58381e0602d2
-
kNN
- Article(No Self Promo): https://copyassignment.com/k-nearest-neighbors-machine-learning/
- Video: https://www.youtube.com/watch?v=UqYde-LULfs
-
SVM
- SVM Video: https://www.youtube.com/watch?v=Lpr__X8zuE8
- Custom Kernel Training(No Self Promo): https://krypticmouse.hashnode.dev/training-svm-over-custom-kernels
-
Naive Bayes
-
Ensemble Learning
- Stacking: https://www.youtube.com/watch?v=sBrQnqwMpvA
- Blending and Stacking Implementation: https://www.youtube.com/watch?v=TuIgtitqJho
- Boosting
- AdaBoost: https://www.youtube.com/watch?v=9CPsYsB4OLI&t=117s
- Gradient Boosting: https://www.youtube.com/watch?v=3CC4N4z3GJc&t=132s
- XGBoost: https://www.youtube.com/watch?v=OtD8wVaFm6E
-
Evaluation Metrics
- Regression Metrics: https://towardsdatascience.com/what-are-the-best-metrics-to-evaluate-your-regression-model-418ca481755b
- Classification Metrics:
-
Cross Validation
- Statquest: https://www.youtube.com/watch?v=TIgfjmp-4BA
- Tutorial: https://www.youtube.com/watch?v=L_dQrZZjGDg
-
Hyperparameter Tuning
- Tutorial: https://www.youtube.com/watch?v=jY2v4q3TPbs
- Article: https://towardsdatascience.com/hyperparameters-optimization-526348bb8e2d
- HyperOpt Tutorial: https://towardsdatascience.com/automate-hyperparameter-tuning-for-your-models-71b18f819604
- Optuna Tutorial: https://analyticsindiamag.com/hands-on-python-guide-to-optuna-a-new-hyperparameter-optimization-tool/
- Ray-Tune Tutorial(Come Here after doing DL): https://medium.com/riselab/cutting-edge-hyperparameter-tuning-with-ray-tune-be6c0447afdf
-
Miscellaneous
- Feature Engineering Micro Course: https://www.kaggle.com/learn/feature-engineering
- Feature Selection: https://www.analyticsvidhya.com/blog/2020/10/feature-selection-techniques-in-machine-learning/
- Handling Imbalanced Data: https://www.analyticsvidhya.com/blog/2017/03/imbalanced-data-classification/
- Class Weights for Imbalance: https://www.youtube.com/watch?v=Kp31wfHpG2c&ab_channel=BhaveshBhatt
- Imbalance Class Metrics: https://machinelearningmastery.com/tour-of-evaluation-metrics-for-imbalanced-classification/
-
Deep Learning
- Basic Intro Playlist: https://www.youtube.com/playlist?list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi
- PyTorch
- PyTorch 101: https://www.youtube.com/watch?v=_R-mvKBD5U8&list=PL98nY_tJQXZln8spB5uTZdKN08mYGkOf2
- Udacity(Course PyTorch): https://www.udacity.com/course/deep-learning-pytorch--ud188
- PyTorch Tutorials: https://pytorch.org/tutorials/
- TensorFlow
- Coursera(Audit all of them): https://www.coursera.org/specializations/deep-learning
- Tensorflow Tutorials: https://www.tensorflow.org/tutorials
- TensorBoard(PyTorch): https://pytorch.org/tutorials/intermediate/tensorboard_tutorial.html
- PyTorch Lightning: https://towardsdatascience.com/from-pytorch-to-pytorch-lightning-a-gentle-introduction-b371b7caaf09
-
Time Series Forecasting
- Handling Missing Data in Time Series: https://www.kaggle.com/juejuewang/handle-missing-values-in-time-series-for-beginners
- Data Splitting in Time Series: https://medium.com/keita-starts-data-science/time-series-split-with-scikit-learn-74f5be38489e
- Article: https://machinelearningmastery.com/simple-time-series-forecasting-models/
- TSF Algos: https://machinelearningmastery.com/time-series-forecasting-methods-in-python-cheat-sheet/
- FbProphet: https://blog.exploratory.io/an-introduction-to-time-series-forecasting-with-prophet-package-in-exploratory-129ed0c12112
- NeuralProphet: https://towardsdatascience.com/facebooks-prophet-deep-learning-neuralprophet-76796aed1d86
- LSTM for TSF: https://stackabuse.com/time-series-prediction-using-lstm-with-pytorch-in-python/
-
Hyperparameter Tuning for NN
- Ray-Tune Tutorial(PyTorch): https://medium.com/riselab/cutting-edge-hyperparameter-tuning-with-ray-tune-be6c0447afdf
- KerasTuner Tutorial(Tensorflow): https://www.tensorflow.org/tutorials/keras/keras_tuner
-
NLP Basics
- Text Preprocessing for NLP: https://towardsdatascience.com/text-preprocessing-in-natural-language-processing-using-python-6113ff5decd8
- Intro to Word Embeddings: https://towardsdatascience.com/introduction-to-word-embeddings-4cf857b12edc
- CountVectorizer: https://towardsdatascience.com/natural-language-processing-count-vectorization-with-scikit-learn-e7804269bb5e#:~:text=%23%20about%20count%20vectorization,call%20fit%20on%20the%20text
- TFIDF Vectorizer: https://medium.com/@cmukesh8688/tf-idf-vectorizer-scikit-learn-dbc0244a911a
- Subword Tokenization;Byte Pair Encoding: https://www.youtube.com/watch?v=zjaRNfvNMTs
- SentencePiece Tokenizer: https://towardsdatascience.com/sentencepiece-tokenizer-demystified-d0a3aac19b15
-
Text Classification
- Basic Text Classification using TFIDF: https://medium.com/swlh/text-classification-using-tf-idf-7404e75565b8
- Text Classification using LSTM: https://towardsdatascience.com/multiclass-text-classification-using-lstm-in-pytorch-eac56baed8df
- Transformers
- Attention(Video): https://www.youtube.com/watch?v=W2rWgXJBZhU
- Transformer NN(Video): https://www.youtube.com/watch?v=TQQlZhbC5ps
- BERT(Video): https://www.youtube.com/watch?v=xI0HHN5XKDo
- Text Classification using BERT: https://towardsdatascience.com/bert-text-classification-using-pytorch-723dfb8b6b5b
-
Beyond Text Classification
- Topic Modelling: https://monkeylearn.com/blog/introduction-to-topic-modeling/#:~:text=Topic%20modeling%20is%20an%20unsupervised,characterize%20a%20set%20of%20documents.
- POS Tagging: https://towardsdatascience.com/part-of-speech-tagging-for-beginners-3a0754b2ebba
- Named Entity Recognition: https://medium.com/cogitotech/how-does-named-entity-recognition-work-ner-methods-f23201a69648#:~:text=Depending%20on%20the%20process%20has,identifying%20and%20locating%20the%20entities.
- Entity Extraction using Transformers: https://chriskhanhtran.github.io/posts/named-entity-recognition-with-transformers/#:~:text=According%20to%20its%20definition%20on,categories%20such%20as%20person%20names%2C
-
Seq2Seq
- Intro to Seq2Seq: https://www.youtube.com/watch?v=MqugtGD605k
- Text Summarization: https://www.youtube.com/watch?v=dHHvdubDnYM
- Machine Translation: https://pytorch.org/tutorials/intermediate/seq2seq_translation_tutorial.html
-
CV Basics
- How computer sees images: https://towardsdatascience.com/how-does-computer-understand-images-c1566d4537bf#:~:text=A%20computer%20sees%20an%20image%20as%200s%20and%201s.,smallest%20unit%20in%20an%20image.&text=When%20we%20take%20a%20digital,a%20different%20number%20of%20channels.
- Intro to OpenCV: https://stackabuse.com/introduction-to-opencv-with-python/
- Video Handling using OpenCV: https://learnopencv.com/read-write-and-display-a-video-using-opencv-cpp-python/
- Image Classification using CNN: https://www.analyticsvidhya.com/blog/2019/10/building-image-classification-models-cnn-pytorch/
- Image Classification using Tranfer Learning: https://learnopencv.com/image-classification-using-transfer-learning-in-pytorch/#:~:text=We%20use%20transfer%20learning%20to,ImageNet%20with%20millions%20of%20images.
- Image Augmentation using Albumentations: https://heartbeat.fritz.ai/image-augmentations-with-albumentations-c1ca8fc78db7
- Image Augmentation using TorchVision: https://www.youtube.com/watch?v=Zvd276j9sZ8
-
Object Detection
- RCNN, FasterRCNN: https://towardsdatascience.com/understanding-fast-r-cnn-and-faster-r-cnn-for-object-detection-adbb55653d97
- YOLOv5: https://towardsai.net/p/computer-vision/yolo-v5%E2%80%8A-%E2%80%8Aexplained-and-demystified
- SSD: https://developers.arcgis.com/python/guide/how-ssd-works/#:~:text=Instead%20of%20using%20sliding%20window,an%20object%20within%20that%20region.
- YOLOv5 on Custom Dataset: https://towardsdatascience.com/how-to-train-a-custom-object-detection-model-with-yolo-v5-917e9ce13208
-
Image Segmentation
-
AutoEncoders
- Intro: https://medium.com/pytorch/implementing-an-autoencoder-in-pytorch-19baa22647d1
- Convolutional Autoencoders: https://analyticsindiamag.com/how-to-implement-convolutional-autoencoder-in-pytorch-with-cuda/
- Variational Autoencoders: https://debuggercafe.com/getting-started-with-variational-autoencoder-using-pytorch/
-
GANS
-
Miscellaneous
- Capsule Networks: https://medium.com/@RiterApp/capsule-networks-as-a-new-approach-to-image-recognition-345d4db0831
- Transformer for Image Data: https://towardsdatascience.com/implementing-visualttransformer-in-pytorch-184f9f16f632