forked from google-deepmind/deepmind-research
-
Notifications
You must be signed in to change notification settings - Fork 0
/
eval.py
104 lines (91 loc) · 3.48 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
# Copyright 2020 Deepmind Technologies Limited.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Evaluates a JAX checkpoint on CIFAR-10/100 or MNIST."""
from absl import app
from absl import flags
import haiku as hk
import numpy as np
import tensorflow.compat.v2 as tf
import tensorflow_datasets as tfds
import tqdm
from adversarial_robustness.jax import model_zoo
_CKPT = flags.DEFINE_string(
'ckpt', None, 'Path to checkpoint.')
_DATASET = flags.DEFINE_enum(
'dataset', 'cifar10', ['cifar10', 'cifar100', 'mnist'],
'Dataset on which the checkpoint is evaluated.')
_WIDTH = flags.DEFINE_integer(
'width', 16, 'Width of WideResNet.')
_DEPTH = flags.DEFINE_integer(
'depth', 70, 'Depth of WideResNet.')
_BATCH_SIZE = flags.DEFINE_integer(
'batch_size', 100, 'Batch size.')
_NUM_BATCHES = flags.DEFINE_integer(
'num_batches', 0,
'Number of batches to evaluate (zero means the whole dataset).')
def main(unused_argv):
print(f'Loading "{_CKPT.value}"')
print(f'Using a WideResNet with depth {_DEPTH.value} and width '
f'{_WIDTH.value}.')
# Create dataset.
if _DATASET.value == 'mnist':
_, data_test = tf.keras.datasets.mnist.load_data()
normalize_fn = model_zoo.mnist_normalize
elif _DATASET.value == 'cifar10':
_, data_test = tf.keras.datasets.cifar10.load_data()
normalize_fn = model_zoo.cifar10_normalize
else:
assert _DATASET.value == 'cifar100'
_, data_test = tf.keras.datasets.cifar100.load_data()
normalize_fn = model_zoo.cifar100_normalize
# Create model.
@hk.transform_with_state
def model_fn(x, is_training=False):
model = model_zoo.WideResNet(
num_classes=10, depth=_DEPTH.value, width=_WIDTH.value,
activation='swish')
return model(normalize_fn(x), is_training=is_training)
# Build dataset.
images, labels = data_test
samples = (images.astype(np.float32) / 255.,
np.squeeze(labels, axis=-1).astype(np.int64))
data = tf.data.Dataset.from_tensor_slices(samples).batch(_BATCH_SIZE.value)
test_loader = tfds.as_numpy(data)
# Load model parameters.
rng_seq = hk.PRNGSequence(0)
if _CKPT.value == 'dummy':
for images, _ in test_loader:
break
params, state = model_fn.init(next(rng_seq), images, is_training=True)
# Reset iterator.
test_loader = tfds.as_numpy(data)
else:
params, state = np.load(_CKPT.value, allow_pickle=True)
# Evaluation.
correct = 0
total = 0
batch_count = 0
total_batches = min((10_000 - 1) // _BATCH_SIZE.value + 1, _NUM_BATCHES.value)
for images, labels in tqdm.tqdm(test_loader, total=total_batches):
outputs = model_fn.apply(params, state, next(rng_seq), images)[0]
predicted = np.argmax(outputs, 1)
total += labels.shape[0]
correct += (predicted == labels).sum().item()
batch_count += 1
if _NUM_BATCHES.value > 0 and batch_count >= _NUM_BATCHES.value:
break
print(f'Accuracy on the {total} test images: {100 * correct / total:.2f}%')
if __name__ == '__main__':
flags.mark_flag_as_required('ckpt')
app.run(main)