forked from terrytong0876/LintCode-1
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBalanced Binary Tree.java
executable file
·166 lines (133 loc) · 4.76 KB
/
Balanced Binary Tree.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
M
1519713672
1. DFS using depth marker: 每个depth都存一下。然后如果有不符合条件的,存为-1.
一旦有 <0 或者差值大于1, 就全部返回Integer.MIN_VALUE. Integer.MIN_VALUE比较极端, 确保结果的正确性。
最后比较返回结果是不是<0. 是<0,那就false.
Traverse 整个tree, O(n)
2. Only calculate depth using maxDepth function. Same concept as in 1, but cost more traversal efforts.
```
/*
Given a binary tree, determine if it is height-balanced.
For this problem, a height-balanced binary tree is defined as a binary tree,
in which the depth of the two subtrees of every node never differ by more than 1.
Example
Given binary tree A={3,9,20,#,#,15,7}, B={3,#,20,15,7}
A) 3 B) 3
/ \ \
9 20 20
/ \ / \
15 7 15 7
The binary tree A is a height-balanced binary tree, but B is not.
Tags Expand
Binary Search Divide and Conquer Recursion
*/
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
/*
DFS: find each subtree's depth, and compare the two.
However, making DFS for every node is very costly: the recursive calculations of depth are done repeatedly, so we want to at least tell, if a path has failed, no need to dive deep -> need a boolean-ish signature.
However, we can't return both boolean && depth (we actually don't need other depth valuese greater than 1).
Combine the boolean && depth signature to mark the failed case: by using a negative number.
*/
class Solution {
public boolean isBalanced(TreeNode root) {
if (root == null) {
return true;
}
return markDepth(root) > 0;
}
private int markDepth(TreeNode node) {
if (node == null) {
return 0;
}
int leftDepth = markDepth(node.left);
int rightDepth = markDepth(node.right);
if (leftDepth < 0 || rightDepth < 0 || (Math.abs(leftDepth - rightDepth)) > 1) {
return Integer.MIN_VALUE;
}
return Math.max(leftDepth, rightDepth) + 1;
}
}
/*
Thinking process:
making use depth first search.
same process as maxDepth() method.
after recursive call, check if Math.abs(left - right) > 1. If so, return -1.
If any case return -1, they all return -1.
at the top return, check if -1.
*/
/* 3.3.2016 recap:
Recursive 1:
Use helper to calculate depth, and also check if left/right depth differ by 1. If all good, return actual depth
*/
public class Solution {
public boolean isBalanced(TreeNode root) {
if (root == null) {
return true;
}
return helper(root) > 0;
}
public int helper(TreeNode node) {
if (node == null) {
return 0;
}
int leftDepth = helper(node.left);
int rightDepth = helper(node.right);
if (leftDepth < 0 || rightDepth < 0 || Math.abs(leftDepth - rightDepth) > 1) {
return Integer.MIN_VALUE;
}
return Math.max(leftDepth, rightDepth) + 1;
}
}
/*
Recursive 2:
Calculate a node's maxDepth. Compare a parent node's sub tree for maxDepth
*/
public class Solution {
public boolean isBalanced(TreeNode root) {
if (root == null) {
return true;
}
int leftDepth = maxDepth(root.left);
int rightDepth = maxDepth(root.right);
if (Math.abs(leftDepth - rightDepth) > 1) {
return false;
}
return isBalanced(root.left) && isBalanced(root.right);
}
public int maxDepth(TreeNode node) {
if (node == null) {
return 0;
}
return Math.max(maxDepth(node.left), maxDepth(node.right)) + 1;
}
}
/*
Failed Solution:
check cases:
root == null, return true;
left = root.left; right = root.right;
left == null && right == null : true;
left == null && right != null && (right.left != null || right.right != null) {
false;
}
return isBalance(left) && isBalance(right).
failed case:[1,2,2,3,3,null,null,4,4]
1
2 2
3 3
4 4
Previous notes:
2. 从基本的题目理解考虑,想到leaf node的情况。如果判断了leaf node, 那其他node应该就是可以recursive。
直接在isBalanced上面recursive.
关键return false的判断情况:如果有个node是null, 那么同一行相邻的那个,一旦有了children,那么就说明两个分支的depth已经是>=2了,那么就return false.
然后这个可能是个小小的优化,因为不需要计算所有的depth.一旦发现一个false,其他的就不需要计算,直接返回了。
*/
```