forked from terrytong0876/LintCode-1
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathEdit Distance.java
executable file
·159 lines (134 loc) · 4.89 KB
/
Edit Distance.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
H
1519272534
两个字符串变话, 找最小值, two sequence DP.
考虑两个字符串变换的最后点: 相等, 互换, 还是缺少? 分析每种情况, 然后列出表达式.
注意, 在i或者j为0的时候, 变成另外一个数字的steps只能是全变.
第一步, 空间时间都是O(MN)
滚动数组优化, 空间O(N)
```
/*
Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2.
(each operation is counted as 1 step.)
You have the following 3 operations permitted on a word:
Insert a character
Delete a character
Replace a character
Example
Given word1 = "mart" and word2 = "karma", return 3.
Tags Expand
String Dynamic Programming
*/
/*
Thoughts:
Two sequences, looking for min # steps of changes to reach equivalence
DP[i][j] min # of steps to reach equivalence with word1[0 ~ i-1], and word2[0 ~ j-1].
To compute DP[i][j], we rely on (i-1) index and (j-1) index. Which has 3 possible conditions:
1. word1[i-1] == word2[j-1] => dp[i -1][j - 1]
2. word1[i-1] != word2[j-1] => repalcement dp[i - 1][j - 1] + 1
3. Insert/Delete => dp[i][j - 1] + 1 or dp[i - 1][j] + 1; where insert and delete has similar effect.
dp[i][j] takese the min of all above cases
dp[0][0] = 0;
dp[0][j] = j;
dp[i][0] = i;
Space: O(MN)
Time: O(MN)
*/
class Solution {
public int minDistance(String word1, String word2) {
if (word1 == null && word2 == null) {
return 0;
}
char[] words1 = word1 == null ? new char[0] : word1.toCharArray();
char[] words2 = word2 == null ? new char[0] : word2.toCharArray();
int m = word1.length();
int n = word2.length();
int[][] dp = new int[m + 1][n + 1];
for (int i = 0; i <= m; i++) {
for (int j = 0; j <= n; j++) {
if (i == 0) {
dp[i][j] = j;
continue;
}
if (j == 0) {
dp[i][j] = i;
continue;
}
dp[i][j] = Math.min(dp[i - 1][j - 1], Math.min(dp[i][j - 1], dp[i - 1][j])) + 1;
if (words1[i - 1] == words2[j - 1]) {
dp[i][j] = Math.min(dp[i][j], dp[i - 1][j - 1]);
}
}
}
return dp[m][n];
}
}
// Optimize: Rolling array
// Space O(N)
class Solution {
public int minDistance(String word1, String word2) {
if (word1 == null && word2 == null) {
return 0;
}
char[] words1 = word1 == null ? new char[0] : word1.toCharArray();
char[] words2 = word2 == null ? new char[0] : word2.toCharArray();
int m = word1.length();
int n = word2.length();
int[][] dp = new int[2][n + 1];
int curr = 0;
int prev = 0;
for (int i = 0; i <= m; i++) {
prev = curr;
curr = 1 - prev;
for (int j = 0; j <= n; j++) {
if (i == 0) {
dp[curr][j] = j;
continue;
}
if (j == 0) {
dp[curr][j] = i;
continue;
}
dp[curr][j] = Math.min(dp[prev][j - 1], Math.min(dp[curr][j - 1], dp[prev][j])) + 1;
if (words1[i - 1] == words2[j - 1]) {
dp[curr][j] = Math.min(dp[curr][j], dp[prev][j - 1]);
}
}
}
return dp[curr][n];
}
}
/**
Previous Notes:
Draw a 2D array, consider rows as word1 and cols as word2.
DP[i][j] means the steps (edit distance) to take to transfer word1[0 ~ i] to word2[0 ~ j]
And, we have 3 different calculations for the 3 methods:
1. Replace: DP[i][j] = word1[i-1] == word2[j-1] ? DP[i - 1][j - 1] : DP[i-1][j-1] + 1;
2. Insert: DP[i][j] = word1[i - 1][j] + 1; // missing 1 char in word1
3. Delete: DP[i][j] = word1[i][j - 1] + 1; // extra char in word1
Note: just remember to start from i=1,j=1, because we are using DP[i-1][j-1], becareful with border case
*/
public class Solution {
public int minDistance(String word1, String word2) {
if (word1 == null && word2 != null) {
return word2.length();
} else if (word1 != null && word2 == null) {
return word1.length();
} else if (word1 == null && word2 == null) {
return 0;
}
int[][] DP = new int[word1.length() + 1][word2.length() + 1];
for (int i = 1; i <= word1.length(); i++) {
DP[i][0] = i;
}
for (int j = 1; j <= word2.length(); j++) {
DP[0][j] = j;
}
for (int i = 1; i <= word1.length(); i++) {
for (int j = 1; j <= word2.length(); j++) {
DP[i][j] = Math.min(Math.min(DP[i - 1][j] + 1, DP[i][j - 1] + 1), word1.charAt(i - 1) == word2.charAt(j - 1) ? DP[i - 1][j - 1] : DP[i - 1][j - 1] + 1);
}
}
return DP[word1.length()][word2.length()];
}
}
```