forked from TheAlgorithms/C
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathqr_decompose.h
176 lines (160 loc) · 5.15 KB
/
qr_decompose.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
/**
* @file
*
* Library functions to compute QR decomposition of a
* given matrix.
*/
#ifndef QR_DECOMPOSE_H
#define QR_DECOMPOSE_H
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
/**
* function to display matrix on stdout
*/
void print_matrix(double **A, /**< matrix to print */
int M, /**< number of rows of matrix */
int N) /**< number of columns of matrix */
{
for (int row = 0; row < M; row++)
{
for (int col = 0; col < N; col++)
printf("% 9.3g\t", A[row][col]);
putchar('\n');
}
putchar('\n');
}
/**
* Compute dot product of two vectors of equal lengths
*
* If \f$\vec{a}=\left[a_0,a_1,a_2,...,a_L\right]\f$ and
* \f$\vec{b}=\left[b_0,b_1,b_1,...,b_L\right]\f$ then
* \f$\vec{a}\cdot\vec{b}=\displaystyle\sum_{i=0}^L a_i\times b_i\f$
*
* \returns \f$\vec{a}\cdot\vec{b}\f$
**/
double vector_dot(double *a, double *b, int L)
{
double mag = 0.f;
for (int i = 0; i < L; i++)
mag += a[i] * b[i];
return mag;
}
/**
* Compute magnitude of vector.
*
* If \f$\vec{a}=\left[a_0,a_1,a_2,...,a_L\right]\f$ then
* \f$\left|\vec{a}\right|=\sqrt{\displaystyle\sum_{i=0}^L a_i^2}\f$
*
* \returns \f$\left|\vec{a}\right|\f$
**/
double vector_mag(double *vector, int L)
{
double dot = vector_dot(vector, vector, L);
return sqrt(dot);
}
/**
* Compute projection of vector \f$\vec{a}\f$ on \f$\vec{b}\f$ defined as
* \f[\text{proj}_\vec{b}\vec{a}=\frac{\vec{a}\cdot\vec{b}}{\left|\vec{b}\right|^2}\vec{b}\f]
*
* \returns NULL if error, otherwise pointer to output
**/
double *vector_proj(double *a, double *b, double *out, int L)
{
const double num = vector_dot(a, b, L);
const double deno = vector_dot(b, b, L);
if (deno == 0) /*! check for division by zero */
return NULL;
const double scalar = num / deno;
for (int i = 0; i < L; i++)
out[i] = scalar * b[i];
return out;
}
/**
* Compute vector subtraction
*
* \f$\vec{c}=\vec{a}-\vec{b}\f$
*
* \returns pointer to output vector
**/
double *vector_sub(double *a, /**< minuend */
double *b, /**< subtrahend */
double *out, /**< resultant vector */
int L /**< length of vectors */
)
{
for (int i = 0; i < L; i++)
out[i] = a[i] - b[i];
return out;
}
/**
* Decompose matrix \f$A\f$ using [Gram-Schmidt
*process](https://en.wikipedia.org/wiki/QR_decomposition).
*
* \f{eqnarray*}{
* \text{given that}\quad A &=&
*\left[\mathbf{a}_1,\mathbf{a}_2,\ldots,\mathbf{a}_{N-1},\right]\\
* \text{where}\quad\mathbf{a}_i &=&
*\left[a_{0i},a_{1i},a_{2i},\ldots,a_{(M-1)i}\right]^T\quad\ldots\mbox{(column
*vectors)}\\
* \text{then}\quad\mathbf{u}_i &=& \mathbf{a}_i
*-\sum_{j=0}^{i-1}\text{proj}_{\mathbf{u}_j}\mathbf{a}_i\\
* \mathbf{e}_i &=&\frac{\mathbf{u}_i}{\left|\mathbf{u}_i\right|}\\
* Q &=& \begin{bmatrix}\mathbf{e}_0 & \mathbf{e}_1 & \mathbf{e}_2 & \dots &
*\mathbf{e}_{N-1}\end{bmatrix}\\
* R &=& \begin{bmatrix}\langle\mathbf{e}_0\,,\mathbf{a}_0\rangle &
*\langle\mathbf{e}_1\,,\mathbf{a}_1\rangle &
*\langle\mathbf{e}_2\,,\mathbf{a}_2\rangle & \dots \\
* 0 & \langle\mathbf{e}_1\,,\mathbf{a}_1\rangle &
*\langle\mathbf{e}_2\,,\mathbf{a}_2\rangle & \dots\\
* 0 & 0 & \langle\mathbf{e}_2\,,\mathbf{a}_2\rangle & \dots\\
* \vdots & \vdots & \vdots & \ddots
* \end{bmatrix}\\
* \f}
**/
void qr_decompose(double **A, /**< input matrix to decompose */
double **Q, /**< output decomposed matrix */
double **R, /**< output decomposed matrix */
int M, /**< number of rows of matrix A */
int N /**< number of columns of matrix A */
)
{
double *col_vector = (double *)malloc(M * sizeof(double));
double *col_vector2 = (double *)malloc(M * sizeof(double));
double *tmp_vector = (double *)malloc(M * sizeof(double));
for (int i = 0; i < N;
i++) /* for each column => R is a square matrix of NxN */
{
for (int j = 0; j < i; j++) /* second dimension of column */
R[i][j] = 0.; /* make R upper triangular */
/* get corresponding Q vector */
for (int j = 0; j < M; j++)
{
tmp_vector[j] = A[j][i]; /* accumulator for uk */
col_vector[j] = A[j][i];
}
for (int j = 0; j < i; j++)
{
for (int k = 0; k < M; k++)
col_vector2[k] = Q[k][j];
vector_proj(col_vector, col_vector2, col_vector2, M);
vector_sub(tmp_vector, col_vector2, tmp_vector, M);
}
double mag = vector_mag(tmp_vector, M);
for (int j = 0; j < M; j++)
Q[j][i] = tmp_vector[j] / mag;
/* compute upper triangular values of R */
for (int kk = 0; kk < M; kk++)
col_vector[kk] = Q[kk][i];
for (int k = i; k < N; k++)
{
for (int kk = 0; kk < M; kk++)
col_vector2[kk] = A[kk][k];
R[i][k] = vector_dot(col_vector, col_vector2, M);
}
}
free(col_vector);
free(col_vector2);
free(tmp_vector);
}
#endif // QR_DECOMPOSE_H