forked from FluxML/model-zoo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhousing.jl
92 lines (70 loc) · 2.36 KB
/
housing.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
using Flux, Statistics, DelimitedFiles
using Flux: Params, gradient
using Flux.Optimise: update!
using DelimitedFiles, Statistics
using Parameters: @with_kw
# This replicates the housing data example from the Knet.jl readme. Although we
# could have reused more of Flux (see the mnist example), the library's
# abstractions are very lightweight and don't force you into any particular
# strategy.
# Struct to define hyperparameters
@with_kw mutable struct Hyperparams
lr::Float64 = 0.1 # learning rate
split_ratio::Float64 = 0.1 # Train Test split ratio, define percentage of data to be used as Test data
end
function get_processed_data(args)
isfile("housing.data") ||
download("https://raw.githubusercontent.com/MikeInnes/notebooks/master/housing.data",
"housing.data")
rawdata = readdlm("housing.data")'
# The last feature is our target -- the price of the house.
split_ratio = args.split_ratio # For the train test split
x = rawdata[1:13,:]
y = rawdata[14:14,:]
# Normalise the data
x = (x .- mean(x, dims = 2)) ./ std(x, dims = 2)
# Split into train and test sets
split_index = floor(Int,size(x,2)*split_ratio)
x_train = x[:,1:split_index]
y_train = y[:,1:split_index]
x_test = x[:,split_index+1:size(x,2)]
y_test = y[:,split_index+1:size(x,2)]
train_data = (x_train, y_train)
test_data = (x_test, y_test)
return train_data,test_data
end
# Struct to define model
mutable struct model
W::AbstractArray
b::AbstractVector
end
# Function to predict output from given parameters
predict(x, m) = m.W*x .+ m.b
# Mean Squared Error
meansquarederror(ŷ, y) = sum((ŷ .- y).^2)/size(y, 2)
function train(; kws...)
# Initialize the Hyperparamters
args = Hyperparams(; kws...)
# Load the data
(x_train,y_train),(x_test,y_test) = get_processed_data(args)
# The model
m = model((randn(1,13)),[0.])
loss(x, y) = meansquarederror(predict(x, m), y)
## Training
η = args.lr
θ = params([m.W, m.b])
for i = 1:500
g = gradient(() -> loss(x_train, y_train), θ)
for x in θ
update!(x, -g[x]*η)
end
if i%100==0
@show loss(x_train, y_train)
end
end
# Predict the RMSE on the test set
err = meansquarederror(predict(x_test, m),y_test)
println(err)
end
cd(@__DIR__)
train()