forked from srvk/eesen
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcuda-kernels.cu
1728 lines (1478 loc) · 64.9 KB
/
cuda-kernels.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// gpucompute/cuda-kernels.cu
// Copyright 2009-2012 Karel Vesely
// 2013 Ehsan Variani
// 2013 Johns Hopkins University (author: Daniel Povey)
// 2013 Hainan Xu
// 2013 Xiaohui Zhang
// 2013 Johns Hopkins University (author: Guoguo Chen)
// 2015 Yajie Miao
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
// In this file is the CUDA code of the CUDA kernels, plus the ANSI-C wrappers
#include <cfloat>
#include "cuda-kernels.h"
#include "cuPrintf.cuh"
#include "cuPrintf.cu"
#include "ctc-utils.h"
#include "stdio.h"
/***********************************************************************
* Generic __device__ functions
*/
template<typename Real>
__device__
static Real _sum_reduce(Real buffer[]) {
// Total number of active threads
int32_cuda nTotalThreads = blockDim.x;
__syncthreads();
// perform tree-based reduction (sum)
while(nTotalThreads > 1) {
int32_cuda halfPoint = ((1+nTotalThreads) >> 1); // divide by two
// only the first half of the threads will be active.
if (threadIdx.x >= halfPoint) { // was <
// Get the shared value stored by another thread
Real temp = 0.0;
if(threadIdx.x < nTotalThreads) { // was +halfPoint
temp = buffer[threadIdx.x]; // was +halfPoint
}
buffer[threadIdx.x - halfPoint] += temp;
}
__syncthreads();
nTotalThreads = ((1+nTotalThreads) >> 1); // divide by two.
}
// the result
return buffer[0];
}
template<typename Real>
__device__
static Real _min_reduce(Real buffer[]) {
// Total number of active threads
int32_cuda nTotalThreads = blockDim.x;
__syncthreads();
// perform tree-based reduction (min)
while(nTotalThreads > 1) {
int32_cuda halfPoint = ((1+nTotalThreads) >> 1); // divide by two
// only the first half of the threads will be active
if (threadIdx.x < halfPoint) {
if (threadIdx.x + halfPoint < nTotalThreads) {
Real temp = buffer[threadIdx.x + halfPoint];
if (temp < buffer[threadIdx.x])
buffer[threadIdx.x] = temp;
}
}
__syncthreads();
nTotalThreads = ((1+nTotalThreads) >> 1); // divide by two
}
// the result
return buffer[0];
}
template<typename Real>
__device__
static Real _max_reduce(Real buffer[]) {
// Total number of active threads
int32_cuda nTotalThreads = blockDim.x;
__syncthreads();
// perform tree-based reduction (max)
while(nTotalThreads > 1) {
int32_cuda halfPoint = ((1+nTotalThreads) >> 1); // divide by two
// only the first half of the threads will be active.
if (threadIdx.x < halfPoint) {
// Get the shared value stored by another thread
if(threadIdx.x+halfPoint < nTotalThreads) {
Real temp = buffer[threadIdx.x + halfPoint];
if (temp > buffer[threadIdx.x])
buffer[threadIdx.x] = temp;
}
}
__syncthreads();
nTotalThreads = ((1+nTotalThreads) >> 1); // divide by two.
}
// the result
return buffer[0];
}
template<typename Real>
__device__
static int32_cuda _max_id_reduce(Real val[], int32_cuda idx[]) {
// Total number of active threads
int32_cuda nTotalThreads = blockDim.x;
__syncthreads();
// perform tree-based reduction (get index of maximum)
while(nTotalThreads > 1) {
int32_cuda halfPoint = ((1+nTotalThreads) >> 1); // divide by two
// only the first half of the threads will be active.
if (threadIdx.x < halfPoint) {
// Get the shared value stored by another thread
Real temp = -1e20;
if(threadIdx.x+halfPoint < nTotalThreads) {
temp = val[idx[threadIdx.x + halfPoint]];
}
if (temp > val[idx[threadIdx.x]]) idx[threadIdx.x]=idx[threadIdx.x + halfPoint];
}
__syncthreads();
nTotalThreads = ((1+nTotalThreads) >> 1); // divide by two.
}
// the result
return idx[0];
}
/***********************************************************************
* CUDA kernels
* the functions are templated to have the float/double operations
*/
// for this kernel, following the newer pattern, the x-dim is the row-index, the
// y-dim is the col-index.
template<typename Real, typename OtherReal>
__global__
static void _copy_from_mat(Real* mat_out, const OtherReal* mat_in, MatrixDim d_out, MatrixDim d_in) {
int32_cuda i = blockIdx.x * blockDim.x + threadIdx.x; // row-index
int32_cuda j = blockIdx.y * blockDim.y + threadIdx.y; // col-index.
int32_cuda index_out = j + i * d_out.stride;
int32_cuda index_in = j + i * d_in.stride;
if (i < d_out.rows && j < d_out.cols)
mat_out[index_out] = static_cast<Real>(mat_in[index_in]);
}
// for this kernel, the x-dim is the row-index at the output, the y-dim is the
// col-index at the output
template<typename Real, typename OtherReal>
__global__
static void _copy_from_mat_trans(Real* mat_out, const OtherReal* mat_in, MatrixDim d_out, MatrixDim d_in) {
int32_cuda i = blockIdx.x * blockDim.x + threadIdx.x; // row-index out
int32_cuda j = blockIdx.y * blockDim.y + threadIdx.y; // col-index out
int32_cuda index_out = j + i * d_out.stride;
int32_cuda index_in = i + j * d_in.stride;
if (i < d_out.rows && j < d_out.cols)
mat_out[index_out] = static_cast<Real>(mat_in[index_in]);
}
template<typename Real>
__global__
static void _apply_exp(Real* mat, MatrixDim d) {
int32_cuda i = blockIdx.x * blockDim.x + threadIdx.x;
int32_cuda j = blockIdx.y * blockDim.y + threadIdx.y;
int32_cuda index = i + j * d.stride;
if ( i < d.cols && j < d.rows ) {
mat[index] = exp(mat[index]);
}
}
template<typename Real>
__global__
static void _set_const(Real* mat, Real value, MatrixDim d) {
int32_cuda i = blockIdx.x * blockDim.x + threadIdx.x;
int32_cuda j = blockIdx.y * blockDim.y + threadIdx.y;
int32_cuda index = i + j * d.stride;
if (i < d.cols && j < d.rows)
mat[index] = value;
}
template<typename Real>
__global__
static void _add(Real* mat, Real value, MatrixDim d) {
int32_cuda i = blockIdx.x * blockDim.x + threadIdx.x;
int32_cuda j = blockIdx.y * blockDim.y + threadIdx.y;
int32_cuda index = i + j*d.stride;
if (i < d.cols && j < d.rows)
mat[index] = mat[index] + value;
}
template<typename Real>
__global__
static void _scale(Real* mat, Real value, MatrixDim d) {
int32_cuda i = blockIdx.x * blockDim.x + threadIdx.x;
int32_cuda j = blockIdx.y * blockDim.y + threadIdx.y;
int32_cuda index = i + j*d.stride;
if (i < d.cols && j < d.rows)
mat[index] = mat[index] * value;
}
template<typename Real>
__global__
static void _apply_log(Real* mat, MatrixDim d) {
int32_cuda i = blockIdx.x * blockDim.x + threadIdx.x;
int32_cuda j = blockIdx.y * blockDim.y + threadIdx.y;
int32_cuda index = i + j*d.stride;
if (i < d.cols && j < d.rows)
mat[index] = log(mat[index]);
}
template<typename Real>
__global__
static void _mul_elements(Real* mat, const Real* A, MatrixDim dst_d, int src_stride) {
int32_cuda i = blockIdx.x * blockDim.x + threadIdx.x;
int32_cuda j = blockIdx.y * blockDim.y + threadIdx.y;
int32_cuda dst_index = i + j*dst_d.stride, src_index = i + j*src_stride;
if (i < dst_d.cols && j < dst_d.rows)
mat[dst_index] = mat[dst_index] * A[src_index];
}
template<typename Real>
__global__
static void _vec_mul_elements(Real* v, const Real* a, int dim) {
int32_cuda i = blockIdx.x * blockDim.x + threadIdx.x;
if (i < dim)
v[i] = v[i] * a[i];
}
template<typename Real>
__global__
static void _mul_rows_vec(Real* mat, const Real* scale, MatrixDim d) {
int32_cuda i = blockIdx.x * blockDim.x + threadIdx.x;
int32_cuda j = blockIdx.y * blockDim.y + threadIdx.y;
int32_cuda index = i + j*d.stride;
if (i < d.cols && j < d.rows)
mat[index] *= scale[j];
}
template<typename Real>
__global__
static void _add_mat(Real alpha, const Real* src, Real* dst, MatrixDim d, int src_stride) {
int32_cuda i = blockIdx.x * blockDim.x + threadIdx.x;
int32_cuda j = blockIdx.y * blockDim.y + threadIdx.y;
int32_cuda index = i + j*d.stride;
int32_cuda index_src = i + j*src_stride;
if (i < d.cols && j < d.rows)
dst[index] = alpha*src[index_src] + dst[index];
}
template<typename Real>
__global__
static void _add_mat_trans(Real alpha, const Real* src, Real* dst, MatrixDim d, int src_stride) {
int32_cuda i = blockIdx.x * blockDim.x + threadIdx.x;
int32_cuda j = blockIdx.y * blockDim.y + threadIdx.y;
int32_cuda index = i + j *d.stride;
int32_cuda index_src = j + i*src_stride;
if (i < d.cols && j < d.rows)
dst[index] = alpha*src[index_src] + dst[index];
}
template<typename Real>
__global__
static void _add_vec_to_rows(Real alpha, const Real* row, Real beta, Real* dst, MatrixDim d) {
int32_cuda i = blockIdx.x * blockDim.x + threadIdx.x;
int32_cuda j = blockIdx.y * blockDim.y + threadIdx.y;
int32_cuda index = i + j*d.stride;
if (i < d.cols && j < d.rows)
dst[index] = alpha*row[i] + beta*dst[index];
}
/*
* CuVector
*/
template<typename Real>
__global__
static void _copy_from_vec_df(double* v_out, const Real* v_in, int dim) {
int32_cuda i = blockIdx.x * blockDim.x + threadIdx.x;
// if (blockIdx.y > 0) return;
if (i < dim) {
v_out[i] = (double) v_in[i];
}
}
template<typename Real>
__global__
static void _copy_from_vec_fd(float* v_out, const Real* v_in, int dim) {
int32_cuda i = blockIdx.x * blockDim.x + threadIdx.x;
// if (blockIdx.y > 0) return;
if ( i < dim) {
v_out[i] = (float) v_in[i];
}
}
template<typename Real>
__global__
static void _vec_min(const Real* v, Real* value, int dim) {
int32_cuda i = blockIdx.x * blockDim.x + threadIdx.x;
if(i >= CU1DBLOCK) return;
__shared__ Real row_data[CU1DBLOCK];
int block_size = (dim + CU1DBLOCK - 1) / CU1DBLOCK;
Real min = 1.0 / 0.0; // infinity.
for (int j = i * block_size; j < (i+1) * block_size && j < dim; j++) {
Real v_j = v[j];
if (v_j < min) min = v_j;
}
row_data[i] = min;
__syncthreads();
//get the sum
*value = _min_reduce(row_data);
}
template<typename Real>
__global__
static void _vec_max(const Real* v, Real* value, int dim) {
int32_cuda i = blockIdx.x * blockDim.x + threadIdx.x;
if(blockIdx.y > 0) return;
__shared__ Real row_data[CU1DBLOCK];
if(i >= CU1DBLOCK) return;
int block_size = (dim + CU1DBLOCK - 1) / CU1DBLOCK;
Real max = -1.0 / 0.0; // -infinity.
for (int j = i * block_size; j < (i+1) * block_size && j < dim; j++) {
Real v_j = v[j];
if (v_j > max) max = v_j;
}
row_data[i] = max;
__syncthreads();
//get the sum
*value = _max_reduce(row_data);
}
// Adds diag(M N) to v, where M and N are matrices. We supply row_stride and
// col_stride arguments for M and N, and swapping them allows us to transpose
// those matrices. Note: we imagine row-major indexing here, just like Kaldi
// and CBLAS (but unlike CUBLAS).
// This kernel expects the blockDim to be (CU1DBLOCK, 1) and the
// gridDim times CU1DBLOCK to be at least num-rows-of-v * threads_per_element.
// threads_per_element should be a power of 2.
template<typename Real>
__global__
static void _add_diag_mat_mat(
Real alpha, Real* v, int v_dim, const Real* M, int M_cols, int M_row_stride,
int M_col_stride, const Real *N, int N_row_stride, int N_col_stride,
int threads_per_element, Real beta) {
// we actually assume blockDim.x == CU1DBLOCK here.
// Each diagonal element of v is processed by "threads_per_element" threads.
__shared__ Real temp_data[CU1DBLOCK];
int i = blockIdx.x * blockDim.x + threadIdx.x;
int v_idx = i / threads_per_element, // v_idx is the index into v that we are supposed to
sub_idx = i % threads_per_element; // add to; 0 <= sub_idx < threads_per_element tells
// us which block of elements we sum up.
if (v_idx >= v_dim) return;
Real sum = 0.0;
for (int j = sub_idx; j < M_cols; j += threads_per_element) {
int M_index = v_idx * M_row_stride + j * M_col_stride,
N_index = j * N_row_stride + v_idx * N_col_stride;
sum += M[M_index] * N[N_index];
}
temp_data[threadIdx.x] = sum;
// start_idx = threadIdx.x - sub_idx; // start of the position in temp_data
// that we want to sum up.
// The following is a tree-based reduction of the elements of temp_data from
// start_idx to start_idx + threads_per_element - 1; our own index is "sub_idx".
__syncthreads();
int num_total_threads = threads_per_element;
while (num_total_threads > 1) {
int half_point = ((1 + num_total_threads) >> 1);
if (sub_idx < half_point) {
Real temp = 0.0;
if (sub_idx + half_point < num_total_threads) {
temp = temp_data[threadIdx.x + half_point];
}
temp_data[threadIdx.x] += temp;
}
__syncthreads();
num_total_threads = half_point;
}
if (sub_idx == 0) {
v[v_idx] = beta * v[v_idx] + alpha * temp_data[threadIdx.x];
}
}
template<typename Real>
__global__
static void _add_vec_vec(Real alpha, Real* v, const Real* x, const Real* y, Real beta, int dim) {
int32_cuda i = blockIdx.x * blockDim.x + threadIdx.x;
// if (blockIdx.y > 0) return;
if (i < dim)
v[i] = alpha * x[i] * y[i] + beta * v[i];
}
template<typename Real>
__global__
static void _vec_apply_exp(Real* v, int dim) {
int32_cuda i = blockIdx.x * blockDim.x + threadIdx.x;
// if (blockIdx.y > 0) return;
if (i < dim) {
v[i] = exp(v[i]);
}
}
template<typename Real>
__global__
static void _vec_apply_log(Real* v, Real* flag, int dim) {
int32_cuda i = blockIdx.x * blockDim.x + threadIdx.x;
// if (blockIdx.y > 0) return;
if (i < dim) {
if (v[i] < 0) {
*flag = 1;
return;
}
v[i] = log(v[i]);
}
}
template<typename Real>
__global__
static void _vec_sum(Real *v, Real *sum, int dim, int inc) {
int i = threadIdx.x;
__shared__ Real row_data[CU1DBLOCK];
if (i >= CU1DBLOCK) return;
Real tmp_sum = 0;
int size = dim / CU1DBLOCK; //the least size in a loop (later part)
int threshold = dim - size * CU1DBLOCK; //any loop below this number would + 1
int loop_start;
int loop_end;
if(i < threshold) {
loop_start = i * (size + 1);
loop_end = (i+1) * (size + 1);
}
else {
loop_start = threshold + i * size;
loop_end = threshold + (i+1) * size;
}
for(int j = loop_start; j< loop_end; j++) {
tmp_sum += v[j * inc];
}
row_data[threadIdx.x] = tmp_sum;
__syncthreads();
*sum = _sum_reduce(row_data);
}
template<typename Real>
__global__
static void _pvec_sum(Real* v, Real* g, int dim, int size) {
int i = blockIdx.x * blockDim.x + threadIdx.x;
int start = size * i;
if (start >= dim) return;
int end = start + size;
if (end > dim) end = dim;
__shared__ Real row_data[CU1DBLOCK];
Real sum = 0;
for (int j = start; j < end; j++)
sum += v[j];
row_data[threadIdx.x] = sum;
__syncthreads();
g[blockIdx.x] = _sum_reduce(row_data);
}
template<typename Real>
__global__
static void _vec_apply_floor(Real *v, Real floor_val, float *count, int dim) {
int i = blockIdx.x * blockDim.x + threadIdx.x;
if ( i < dim) {
if ( v[i] < floor_val) {
v[i] = floor_val;
count[i] = 1;
} else {
count[i] = 0;
}
}
}
// Caution, here i/block{idx,dim}.x is the row index and j/block{idx,dim}.y is the col index.
// this is for no reason, really, I just happened to prefer this
// at the time. [dan]
template<typename Real>
__global__
static void _apply_heaviside(Real* mat, MatrixDim d) {
int i = blockIdx.x * blockDim.x + threadIdx.x;
int j = blockIdx.y * blockDim.y + threadIdx.y;
int index = i * d.stride + j;
if (i < d.rows && j < d.cols) {
mat[index] = (mat[index] > 0.0 ? 1.0 : 0.0);
}
}
// Caution, here i/block{idx,dim}.x is the row index and j/block{idx,dim}.y is the col index.
// this is for no reason, really, I just happened to prefer this
// at the time. [dan]
template<typename Real>
__global__
static void _apply_pow(Real* mat, Real power, MatrixDim d) {
int i = blockIdx.x * blockDim.x + threadIdx.x;
int j = blockIdx.y * blockDim.y + threadIdx.y;
int index = i * d.stride + j;
if (i < d.rows && j < d.cols) {
if (power == 1.0)
return;
if (power == 2.0) {
mat[index] = mat[index] * mat[index];
} else if (power == 0.5) {
if (!(mat[index] >= 0.0))
return;
mat[index] = sqrt(mat[index]);
} else {
mat[index] = pow(mat[index], power);
}
}
}
template<typename Real>
__global__
static void _apply_floor(Real* mat, Real floor_val, MatrixDim d) {
int i = blockIdx.x * blockDim.x + threadIdx.x;
int j = blockIdx.y * blockDim.y + threadIdx.y;
int index = i + j * d.stride;
if (i < d.cols && j < d.rows) {
if (mat[index] < floor_val)
mat[index] = floor_val;
}
}
template<typename Real>
__global__
static void _apply_ceiling(Real* mat, Real ceiling_val, MatrixDim d) {
int i = blockIdx.x * blockDim.x + threadIdx.x;
int j = blockIdx.y * blockDim.y + threadIdx.y;
int index = i + j * d.stride;
if (i < d.cols && j < d.rows ) {
if (mat[index] > ceiling_val)
mat[index] = ceiling_val;
}
}
template<typename Real>
__global__
static void _invert_elements(Real* data, MatrixDim d) {
int i = blockIdx.x * blockDim.x + threadIdx.x;
int j = blockIdx.y * blockDim.y + threadIdx.y;
int index = i + j * d.stride;
if (i < d.cols && j < d.rows)
data[index] = 1.0 / data[index];
}
template<typename Real>
__global__
static void _sqrt_elements(Real* data, Real epsilon, MatrixDim d) {
int i = blockIdx.x * blockDim.x + threadIdx.x;
int j = blockIdx.y * blockDim.y + threadIdx.y;
int index = i + j * d.stride;
if (i < d.cols && j < d.rows)
data[index] = sqrt(data[index]+epsilon);
}
template<typename Real>
__global__
static void _add_row_sum_mat(const Real* mat, Real* vec_sum, MatrixDim d) {
int i = blockIdx.y * blockDim.y + threadIdx.y; //col
int j = blockIdx.x * blockDim.x + threadIdx.x; //row
if(blockIdx.x > 0) return;
if(blockDim.y != 1) return;
__shared__ Real row_data[CU1DBLOCK];
//copy the input to row_data
row_data[j] = mat[i+j*d.stride];
__syncthreads();
//get the sum
Real sum = _sum_reduce(row_data);
__syncthreads();
//add to previously accumulated sum
if(threadIdx.x == 0)
vec_sum[i] += sum;
}
template<typename Real>
__global__
static void _add_col_sum_mat(const Real* mat, Real* vec_sum, MatrixDim d) {
int i = blockIdx.x * blockDim.x + threadIdx.x; //row
int j = blockIdx.y * blockDim.y + threadIdx.y; //col
if(blockIdx.x > 0) return;
if(blockDim.y != 1) return;
__shared__ Real row_data[CU1DBLOCK];
//copy the input to row_data
row_data[i] = mat[i+j*d.stride];
__syncthreads();
//get the sum
Real sum = _sum_reduce(row_data);
__syncthreads();
//add to previously accumulated sum
if(threadIdx.x == 0)
vec_sum[j] += sum;
}
template<typename Real>
__global__
static void _add_mat_mat_elements(Real *data, const Real *srcA_data,
const Real *srcB_data, MatrixDim dim,
int srcA_stride, int srcB_stride, Real alpha,
Real beta) {
int32_cuda i = blockIdx.x * blockDim.x + threadIdx.x;
int32_cuda j = blockIdx.y * blockDim.y + threadIdx.y;
int32_cuda tgt_index = i + j * dim.stride;
int32_cuda srcA_index = i + j * srcA_stride;
int32_cuda srcB_index = i + j * srcB_stride;
if (i < dim.cols && j < dim.rows) {
data[tgt_index] = alpha * srcA_data[srcA_index] * srcB_data[srcB_index]
+ beta * data[tgt_index];
}
}
/*
* cu::
*/
template<typename Real>
__global__
static void _sigmoid(Real*y, const Real*x, MatrixDim d, int src_stride) {
int i = blockIdx.x * blockDim.x + threadIdx.x;
int j = blockIdx.y * blockDim.y + threadIdx.y;
int dst_index = i + j*d.stride, src_index = i + j*src_stride;
if(i < d.cols && j < d.rows) {
Real res = 1.0 / (1.0 + exp(-x[src_index]));
y[dst_index] = res;
}
}
template<typename Real>
__global__
static void _diff_sigmoid(Real*eout, const Real*e, const Real*y, MatrixDim d, int e_stride, int y_stride) {
int i = blockIdx.x * blockDim.x + threadIdx.x;
int j = blockIdx.y * blockDim.y + threadIdx.y;
int dst_index = i + j*d.stride;
int e_index = i + j*e_stride;
int y_index = i + j*y_stride;
if (i < d.cols && j < d.rows )
eout[dst_index] = y[y_index]*(1.0-y[y_index]) * e[e_index];
}
template<typename Real>
__global__
static void _tanh(Real*y, const Real*x, MatrixDim d, int src_stride) {
int i = blockIdx.x * blockDim.x + threadIdx.x;
int j = blockIdx.y * blockDim.y + threadIdx.y;
int dst_index = i + j*d.stride, src_index = i + j * src_stride;
if(i < d.cols && j < d.rows) {
Real exp_2x = exp(2.0*x[src_index]);
Real res;
if(isinf(exp_2x)) {
res = 1.0;
} else {
res = (exp_2x - 1.0) / (exp_2x + 1.0);
}
y[dst_index] = res;
}
}
template<typename Real>
__global__
static void _diff_tanh(Real*eout, const Real*e, const Real*y, MatrixDim d, int e_stride, int y_stride) {
int i = blockIdx.x * blockDim.x + threadIdx.x;
int j = blockIdx.y * blockDim.y + threadIdx.y;
int dst_index = i + j*d.stride;
int e_index = i + j*e_stride;
int y_index = i + j*y_stride;
if (i < d.cols && j < d.rows )
eout[dst_index] = (1.0 - y[y_index]*y[y_index]) * e[e_index];
}
template<typename Real>
__global__
static void _softmax_reduce(Real*y, const Real*x, MatrixDim d, int src_stride) {
int j = blockIdx.x;
int THREADS = blockDim.x;
if (j >= d.rows) return;
__shared__ Real aux[CU1DBLOCK];
int steps = (d.cols - 1) / THREADS + 1;
//copy input to aux
aux[threadIdx.x] = x[threadIdx.x+j*d.stride];
for(int i=1; i<steps; ++i) {
if(threadIdx.x+i*THREADS < d.cols && aux[threadIdx.x] < x[threadIdx.x+i*THREADS+j*d.stride])
aux[threadIdx.x] = x[threadIdx.x+i*THREADS+j*d.stride];
}
//get the maximum value
int nTotalThreads = THREADS;
__syncthreads();
while(nTotalThreads > 1) {
int halfPoint = ((1+nTotalThreads) >> 1); // divide by two
// only the first half of the threads will be active.
if (threadIdx.x < halfPoint) {
// Get the shared value stored by another thread
if(threadIdx.x+halfPoint < nTotalThreads && aux[threadIdx.x] < aux[threadIdx.x+halfPoint])
aux[threadIdx.x] = aux[threadIdx.x + halfPoint];
}
__syncthreads();
nTotalThreads = ((1+nTotalThreads) >> 1); // divide by two.
}
Real max = aux[0];
__syncthreads();
// subtract max, apply exp, sum up...
y[threadIdx.x+j*d.stride] = exp(x[threadIdx.x+j*d.stride] - max);
aux[threadIdx.x] = y[threadIdx.x+j*d.stride];
for(int i=1; i<steps; i++) {
if(threadIdx.x+i*THREADS < d.cols) {
y[threadIdx.x+i*THREADS+j*d.stride] = exp(x[threadIdx.x+i*THREADS+j*d.stride] - max);
aux[threadIdx.x] += y[threadIdx.x+i*THREADS+j*d.stride];
}
}
nTotalThreads = THREADS;
__syncthreads();
while(nTotalThreads > 1) {
int halfPoint = ((1+nTotalThreads) >> 1); // divide by two
// only the first half of the threads will be active.
if (threadIdx.x < halfPoint) {
// Get the shared value stored by another thread
if(threadIdx.x+halfPoint < nTotalThreads)
aux[threadIdx.x] += aux[threadIdx.x + halfPoint];
}
__syncthreads();
nTotalThreads = ((1+nTotalThreads) >> 1); // divide by two.
}
Real sum = aux[0];
__syncthreads();
//normalize by sum...
for(int i=0; i<steps; i++) {
if(threadIdx.x+i*THREADS < d.cols) {
y[threadIdx.x+i*THREADS+j*d.stride] = y[threadIdx.x+i*THREADS+j*d.stride] / sum;
}
}
}
template<typename Real>
__global__
static void _splice(Real* y, const Real* x, const int32_cuda* off, MatrixDim d_out, MatrixDim d_in) {
int32_cuda i = blockIdx.x * blockDim.x + threadIdx.x;
int32_cuda j = blockIdx.y * blockDim.y + threadIdx.y;
int32_cuda index = i + j*d_out.stride;
if (i < d_out.cols && j < d_out.rows ) {
int32_cuda src_col = i % d_in.cols;
int32_cuda src_row = j + off[i / d_in.cols];
if(src_row < 0) src_row = 0;
if(src_row >= d_in.rows) src_row = d_in.rows-1;
y[index] = x[src_col + src_row*d_in.stride];
}
}
template<typename Real>
__global__
static void _copy(Real* y, const Real* x, const int32_cuda* copy_from, MatrixDim d_out, MatrixDim d_in) {
int32_cuda i = blockIdx.x * blockDim.x + threadIdx.x;
int32_cuda j = blockIdx.y * blockDim.y + threadIdx.y;
int32_cuda index = i + j*d_out.stride;
if (i < d_out.cols && j < d_out.rows ) {
int32_cuda src_col = copy_from[i];
if(src_col >= 0 && src_col < d_in.cols) {
y[index] = x[src_col + j*d_in.stride];
} else {
y[index] = 1.0/0.0;
}
}
}
template<typename Real>
__global__
static void _randomize(Real* y, const Real* x, const int32_cuda* copy_from, MatrixDim d_out, MatrixDim d_in) {
int32_cuda i = blockIdx.x * blockDim.x + threadIdx.x;
int32_cuda j = blockIdx.y * blockDim.y + threadIdx.y;
int32_cuda index = i + j*d_out.stride;
if (i < d_out.cols && j < d_out.rows ) {
int32_cuda src_row = copy_from[j];
y[index] = x[i + src_row*d_in.stride];
}
}
template<typename Real>
__global__
static void _regularize_l1(Real* wei, Real* grad, Real l1, Real lr, MatrixDim d, int stride_grad) {
int32_cuda i = blockIdx.x * blockDim.x + threadIdx.x;
int32_cuda j = blockIdx.y * blockDim.y + threadIdx.y;
int32_cuda index = i + j*d.stride,
grad_index = i + j*stride_grad;
if (i < d.cols && j < d.rows) {
if(wei[index]==0.0) return; //skip L1 if zero weight!
Real l1_signed = l1;
if(wei[index] < 0.0) //flip sign
l1_signed = -l1;
Real before = wei[index];
Real after = wei[index] -lr*grad[grad_index] -l1_signed;//simulate update
if((after > 0.0) ^ (before > 0.0)) { //sign changed?
wei[index] = 0.0;
grad[grad_index] = 0.0;
} else {
wei[index] -= l1_signed;
}
}
}
template<typename Real>
__global__
static void _find_row_max_id(const Real* mat, Real* vec_val, int32_cuda* vec_id, int32_cuda voff, MatrixDim d) {
int32_cuda i = blockIdx.x * blockDim.x + threadIdx.x;
int32_cuda j = blockIdx.y * blockDim.y + threadIdx.y;
if(blockIdx.x > 0) return;
if(blockDim.y != 1) return;
__shared__ Real value[CU1DBLOCK];
__shared__ int32_cuda index[CU1DBLOCK];
//copy to shared memory
value[threadIdx.x] = mat[i+j*d.stride];
index[threadIdx.x] = threadIdx.x;
__syncthreads();
//get the id of the max value
int32_cuda out_max = _max_id_reduce(value, index);
__syncthreads();
//see if it's bigger value
if(threadIdx.x == 0) {
if(vec_val[j] <= mat[out_max+j*d.stride]) {
vec_val[j] = mat[out_max+j*d.stride];
vec_id[j] = voff+out_max;
}
}
}
/***********************************************************************
* ANSI-C wrappers of CUDA kernels
*/
/*
* "int32"
*/
void cudaI32_set_const(dim3 Gr, dim3 Bl, int32_cuda* mat, int32_cuda value, MatrixDim d) {
_set_const<<<Gr,Bl>>>(mat,value,d);
}
/*
* CuMatrix
*/
void cudaF_apply_exp(dim3 Gr, dim3 Bl, float* mat, MatrixDim d) {
_apply_exp<<<Gr,Bl>>>(mat,d);
}
void cudaD_apply_exp(dim3 Gr, dim3 Bl, double* mat, MatrixDim d) {
_apply_exp<<<Gr,Bl>>>(mat,d);
}
void cudaF_apply_pow(dim3 Gr, dim3 Bl, float* mat, float power, MatrixDim d) {
_apply_pow<<<Gr,Bl>>>(mat, power, d);
}
void cudaD_apply_pow(dim3 Gr, dim3 Bl, double* mat, double power, MatrixDim d) {
_apply_pow<<<Gr,Bl>>>(mat, power, d);
}
void cudaF_apply_floor(dim3 Gr, dim3 Bl, float* mat, float floor_val, MatrixDim d) {
_apply_floor<<<Gr,Bl>>>(mat, floor_val, d);
}
void cudaD_apply_floor(dim3 Gr, dim3 Bl, double* mat, double floor_val, MatrixDim d) {
_apply_floor<<<Gr,Bl>>>(mat, floor_val, d);
}
void cudaF_apply_heaviside(dim3 Gr, dim3 Bl, float* mat, MatrixDim d) {
_apply_heaviside<<<Gr,Bl>>>(mat, d);
}
void cudaD_apply_heaviside(dim3 Gr, dim3 Bl, double* mat, MatrixDim d) {
_apply_heaviside<<<Gr,Bl>>>(mat, d);
}
void cudaF_apply_ceiling(dim3 Gr, dim3 Bl, float* mat, float ceiling_val, MatrixDim d) {
_apply_ceiling<<<Gr,Bl>>>(mat, ceiling_val, d);
}
void cudaD_apply_ceiling(dim3 Gr, dim3 Bl, double* mat, double ceiling_val, MatrixDim d) {
_apply_ceiling<<<Gr,Bl>>>(mat, ceiling_val, d);
}
void cudaF_set_const(dim3 Gr, dim3 Bl, float* mat, float value, MatrixDim d) {
_set_const<<<Gr,Bl>>>(mat,value,d);
}
void cudaD_set_const(dim3 Gr, dim3 Bl, double* mat, double value, MatrixDim d) {
_set_const<<<Gr,Bl>>>(mat,value,d);
}
void cudaF_add(dim3 Gr, dim3 Bl, float* mat, float value, MatrixDim d) {
_add<<<Gr,Bl>>>(mat,value,d);
}
void cudaD_add(dim3 Gr, dim3 Bl, double* mat, double value, MatrixDim d) {
_add<<<Gr,Bl>>>(mat,value,d);
}
void cudaF_scale(dim3 Gr, dim3 Bl, float* mat, float value, MatrixDim d) {
_scale<<<Gr,Bl>>>(mat,value,d);
}
void cudaD_scale(dim3 Gr, dim3 Bl, double* mat, double value, MatrixDim d) {
_scale<<<Gr,Bl>>>(mat,value,d);
}
void cudaF_apply_log(dim3 Gr, dim3 Bl, float* mat, MatrixDim d) {
_apply_log<<<Gr,Bl>>>(mat,d);
}
void cudaD_apply_log(dim3 Gr, dim3 Bl, double* mat, MatrixDim d) {
_apply_log<<<Gr,Bl>>>(mat,d);
}
void cudaF_mul_elements(dim3 Gr, dim3 Bl, float* mat, const float* A, MatrixDim dst_d, int src_stride) {
_mul_elements<<<Gr,Bl>>>(mat,A,dst_d,src_stride);
}
void cudaD_mul_elements(dim3 Gr, dim3 Bl, double* mat, const double* A, MatrixDim dst_d, int src_stride) {
_mul_elements<<<Gr,Bl>>>(mat,A,dst_d,src_stride);
}
void cudaF_mul_rows_vec(dim3 Gr, dim3 Bl, float* mat, const float* scale, MatrixDim d) {