This repository was archived by the owner on Nov 2, 2020. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathOpenCV.py
154 lines (119 loc) · 5.07 KB
/
OpenCV.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
############################################################################################
#
# The MIT License (MIT)
#
# GeniSys TASS OpenCV Helpers
# Copyright (C) 2018 Adam Milton-Barker (AdamMiltonBarker.com)
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
#
# Title: GeniSys TASS OpenCV Helpers
# Description: OpenCV helpers functions for GeniSys TASS devices and applications.
# Configuration: required/confs.json
# Last Modified: 2018-10-02
#
############################################################################################
import os, json, cv2
import numpy as np
from datetime import datetime
class OpenCV():
def __init__(self):
###############################################################
#
# Nothing to do
#
###############################################################
pass
def saveImage(self,networkPath,frame):
###############################################################
#
# Saves an image
#
###############################################################
timeDirectory = networkPath + "data/captures/"+datetime.now().strftime('%Y-%m-%d')+'/'+datetime.now().strftime('%H')
if not os.path.exists(timeDirectory):
os.makedirs(timeDirectory)
currentImage=timeDirectory+'/'+datetime.now().strftime('%M-%S')+'.jpg'
print(currentImage)
print("")
cv2.imwrite(currentImage, frame)
return currentImage
def loadImage(self, imgID):
###############################################################
#
# Loads an image
#
###############################################################
imgLoadStart = time.time()
img = cv2.imread("data/captured/"+str(imgID)+'.png')
imgLoadEnd = (imgLoadStart - time.time())
self.Helpers.logMessage(
self.LogFile,
"TASS",
"INFO",
"Image Loaded Into TASS In " + str(imgLoadTime) + " Seconds")
return img
def rect_to_bb(self, rect):
###############################################################
#
# Take a bounding predicted by dlib and convert it to the
# format (x, y, w, h) as we would normally do with OpenCV
#
###############################################################
x = rect.left()
y = rect.top()
w = rect.right() - x
h = rect.bottom() - y
return (x, y, w, h)
def shape_to_np(self, shape, dtype="int"):
###############################################################
#
# Initialize the list of (x, y)-coordinates
#
###############################################################
coords = np.zeros((68, 2), dtype=dtype)
for i in range(0, 68):
coords[i] = (shape.part(i).x, shape.part(i).y)
return coords
def whiten(self, source_image):
###############################################################
#
# Creates a whitened image
#
###############################################################
source_mean = np.mean(source_image)
source_standard_deviation = np.std(source_image)
std_adjusted = np.maximum(source_standard_deviation, 1.0 / np.sqrt(source_image.size))
whitened_image = np.multiply(np.subtract(source_image, source_mean), 1 / std_adjusted)
return whitened_image
def preprocess(self, src):
###############################################################
#
# Scale an image
#
###############################################################
NETWORK_WIDTH = 160
NETWORK_HEIGHT = 160
preprocessed_image = cv2.resize(src, (NETWORK_WIDTH, NETWORK_HEIGHT))
#convert to RGB
preprocessed_image = cv2.cvtColor(preprocessed_image, cv2.COLOR_BGR2RGB)
#whiten
preprocessed_image = self.whiten(preprocessed_image)
# return the preprocessed image
return preprocessed_image