forked from PreferredAI/cornac
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathease_movielens.py
61 lines (51 loc) · 1.76 KB
/
ease_movielens.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
# Copyright 2018 The Cornac Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Example (EASEᴿ) Embarrassingly Shallow Autoencoders for Sparse Data on MovieLens data"""
import cornac
from cornac.datasets import movielens
from cornac.eval_methods import RatioSplit
# Load user-item feedback
data = movielens.load_feedback(variant="1M")
# Instantiate an evaluation method to split data into train and test sets.
ratio_split = RatioSplit(
data=data,
test_size=0.2,
exclude_unknowns=True,
verbose=True,
seed=123,
rating_threshold=0.8,
)
ease_original = cornac.models.EASE(
lamb=500,
name="EASEᴿ (B>0)",
posB=True
)
ease_all = cornac.models.EASE(
lamb=500,
name="EASEᴿ (B>-∞)",
posB=False
)
# Instantiate evaluation measures
rec_20 = cornac.metrics.Recall(k=20)
rec_50 = cornac.metrics.Recall(k=50)
ndcg_100 = cornac.metrics.NDCG(k=100)
# Put everything together into an experiment and run it
cornac.Experiment(
eval_method=ratio_split,
models=[ease_original, ease_all],
metrics=[rec_20, rec_50, ndcg_100],
user_based=True, #If `False`, results will be averaged over the number of ratings.
save_dir=None
).run()