forked from DeepRNN/image_captioning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbase_model.py
242 lines (194 loc) · 9.34 KB
/
base_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
import os
import sys
import json
import numpy as np
import pandas as pd
import tensorflow as tf
import cv2
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
from tqdm import tqdm
from dataset import *
from utils.words import *
from utils.coco.coco import *
from utils.coco.pycocoevalcap.eval import *
class ImageLoader(object):
def __init__(self, mean_file):
self.bgr = True
self.scale_shape = np.array([224, 224], np.int32)
self.crop_shape = np.array([224, 224], np.int32)
self.mean = np.load(mean_file).mean(1).mean(1)
def load_img(self, img_file):
""" Load and preprocess an image. """
img = cv2.imread(img_file)
if self.bgr:
temp = img.swapaxes(0, 2)
temp = temp[::-1]
img = temp.swapaxes(0, 2)
img = cv2.resize(img, (self.scale_shape[0], self.scale_shape[1]))
offset = (self.scale_shape - self.crop_shape) / 2
offset = offset.astype(np.int32)
img = img[offset[0]:offset[0]+self.crop_shape[0], offset[1]:offset[1]+self.crop_shape[1], :]
img = img - self.mean
return img
def load_imgs(self, img_files):
""" Load and preprocess a list of images. """
imgs = []
for img_file in img_files:
imgs.append(self.load_img(img_file))
imgs = np.array(imgs, np.float32)
return imgs
class BaseModel(object):
def __init__(self, params, mode):
self.params = params
self.mode = mode
self.batch_size = params.batch_size if mode=='train' else 1
self.cnn_model = params.cnn_model
self.train_cnn = params.train_cnn
self.init_lstm_with_fc_feats = params.init_lstm_with_fc_feats if self.cnn_model=='vgg16' else False
self.class_balancing_factor = params.class_balancing_factor
self.save_dir = os.path.join(params.save_dir, self.cnn_model+'/')
self.word_table = WordTable(params.vocab_size, params.dim_embed, params.max_sent_len, params.word_table_file)
self.word_table.load()
self.img_loader = ImageLoader(params.mean_file)
self.img_shape = [224, 224, 3]
self.global_step = tf.Variable(0, name = 'global_step', trainable = False)
self.build()
self.saver = tf.train.Saver(max_to_keep = 100)
def build(self):
raise NotImplementedError()
def get_feed_dict(self, batch, is_train, contexts=None, feats=None):
raise NotImplementedError()
def train(self, sess, train_coco, train_data):
""" Train the model. """
print("Training the model...")
params = self.params
num_epochs = params.num_epochs
for epoch_no in tqdm(list(range(num_epochs)), desc='epoch'):
for idx in tqdm(list(range(train_data.num_batches)), desc='batch'):
batch = train_data.next_batch()
if self.train_cnn:
# Train CNN and RNN
feed_dict = self.get_feed_dict(batch, is_train=True)
_, loss0, loss1, global_step = sess.run([self.opt_op, self.loss0, self.loss1, self.global_step], feed_dict=feed_dict)
else:
# Train RNN only
img_files, _, _ = batch
imgs = self.img_loader.load_imgs(img_files)
if self.init_lstm_with_fc_feats:
contexts, feats = sess.run([self.conv_feats, self.fc_feats], feed_dict={self.imgs:imgs, self.is_train:False})
feed_dict = self.get_feed_dict(batch, is_train=True, contexts=contexts, feats=feats)
else:
contexts = sess.run(self.conv_feats, feed_dict={self.imgs:imgs, self.is_train:False})
feed_dict = self.get_feed_dict(batch, is_train=True, contexts=contexts)
_, loss0, loss1, global_step = sess.run([self.opt_op, self.loss0, self.loss1, self.global_step], feed_dict=feed_dict)
print(" Loss0=%f Loss1=%f" %(loss0, loss1))
if (global_step + 1) % params.save_period == 0:
self.save(sess)
train_data.reset()
self.save(sess)
print("Training complete.")
def val(self, sess, val_coco, val_data):
""" Validate the model. """
print("Validating the model ...")
results = []
result_dir = self.params.val_result_dir
# Generate the captions for the images
for k in tqdm(list(range(val_data.count))):
batch = val_data.next_batch()
img_files = batch
img_file = img_files[0]
img_name = os.path.splitext(img_file.split(os.sep)[-1])[0]
if self.train_cnn:
feed_dict = self.get_feed_dict(batch, is_train=False)
else:
img_files = batch
imgs = self.img_loader.load_imgs(img_files)
if self.init_lstm_with_fc_feats:
contexts, feats = sess.run([self.conv_feats, self.fc_feats], feed_dict={self.imgs:imgs, self.is_train:False})
feed_dict = self.get_feed_dict(batch, is_train=False, contexts=contexts, feats=feats)
else:
contexts = sess.run(self.conv_feats, feed_dict={self.imgs:imgs, self.is_train:False})
feed_dict = self.get_feed_dict(batch, is_train=False, contexts=contexts)
result = sess.run(self.results, feed_dict=feed_dict)
sentence = self.word_table.indices_to_sent(result.squeeze())
results.append({'image_id': val_data.img_ids[k], 'caption': sentence})
# Save the result in an image file
img = mpimg.imread(img_file)
plt.imshow(img)
plt.axis('off')
plt.title(sentence)
plt.savefig(os.path.join(result_dir, img_name+'_result.jpg'))
val_data.reset()
# Evaluate these captions
val_res_coco = val_coco.loadRes2(results)
scorer = COCOEvalCap(val_coco, val_res_coco)
scorer.evaluate()
print("Validation complete.")
def test(self, sess, test_data, show_result=False):
""" Test the model. """
print("Testing the model ...")
result_file = self.params.test_result_file
result_dir = self.params.test_result_dir
captions = []
# Generate the captions for the images
for k in tqdm(list(range(test_data.count))):
batch = test_data.next_batch()
img_files = batch
img_file = img_files[0]
img_name = os.path.splitext(img_file.split(os.sep)[-1])[0]
if self.train_cnn:
feed_dict = self.get_feed_dict(batch, is_train=False)
else:
imgs = self.img_loader.load_imgs(img_files)
if self.init_lstm_with_fc_feats:
contexts, feats = sess.run([self.conv_feats, self.fc_feats], feed_dict={self.imgs:imgs, self.is_train:False})
feed_dict = self.get_feed_dict(batch, is_train=False, contexts=contexts, feats=feats)
else:
contexts = sess.run(self.conv_feats, feed_dict={self.imgs:imgs, self.is_train:False})
feed_dict = self.get_feed_dict(batch, is_train=False, contexts=contexts)
result = sess.run(self.results, feed_dict=feed_dict)
sentence = self.word_table.indices_to_sent(result.squeeze())
captions.append(sentence)
# Save the result in an image file
img = mpimg.imread(img_file)
plt.imshow(img)
plt.axis('off')
plt.title(sentence)
plt.savefig(os.path.join(result_dir, img_name+'_result.jpg'))
# Save the captions to a file
results = pd.DataFrame({'image_files':test_data.img_files, 'caption':captions})
results.to_csv(result_file)
print("Testing complete.")
def save(self, sess):
""" Save the model. """
print(("Saving model to %s" % self.save_dir))
self.saver.save(sess, self.save_dir, self.global_step)
def load(self, sess):
""" Load the model. """
print("Loading model...")
checkpoint = tf.train.get_checkpoint_state(self.save_dir)
if checkpoint is None:
print("Error: No saved model found. Please train first.")
sys.exit(0)
self.saver.restore(sess, checkpoint.model_checkpoint_path)
def load2(self, data_path, session, ignore_missing=True):
""" Load a pretrained CNN model. """
print("Loading CNN model from %s..." %data_path)
data_dict = np.load(data_path).item()
count = 0
miss_count = 0
for op_name in data_dict:
with tf.variable_scope(op_name, reuse=True):
for param_name, data in data_dict[op_name].iteritems():
try:
var = tf.get_variable(param_name)
session.run(var.assign(data))
count += 1
#print("Variable %s:%s loaded" %(op_name, param_name))
except ValueError:
miss_count += 1
#print("Variable %s:%s missed" %(op_name, param_name))
if not ignore_missing:
raise
print("%d variables loaded. %d variables missed." %(count, miss_count))