forked from xtensor-stack/xtensor
-
Notifications
You must be signed in to change notification settings - Fork 0
/
xsort.hpp
957 lines (822 loc) · 33.9 KB
/
xsort.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
/***************************************************************************
* Copyright (c) Johan Mabille, Sylvain Corlay and Wolf Vollprecht *
* Copyright (c) QuantStack *
* *
* Distributed under the terms of the BSD 3-Clause License. *
* *
* The full license is in the file LICENSE, distributed with this software. *
****************************************************************************/
#ifndef XTENSOR_SORT_HPP
#define XTENSOR_SORT_HPP
#include <algorithm>
#include <utility>
#include "xarray.hpp"
#include "xeval.hpp"
#include "xslice.hpp" // for xnone
#include "xmanipulation.hpp"
#include "xtensor.hpp"
#include "xtensor_config.hpp"
namespace xt
{
namespace detail
{
template <class T>
std::ptrdiff_t adjust_secondary_stride(std::ptrdiff_t stride, T shape)
{
return stride != 0 ? stride : static_cast<std::ptrdiff_t>(shape);
}
template <class E, class F>
inline void call_over_leading_axis(E& ev, F&& fct)
{
std::size_t n_iters = 1;
std::ptrdiff_t secondary_stride;
if (ev.layout() == layout_type::row_major)
{
n_iters = std::accumulate(ev.shape().begin(), ev.shape().end() - 1,
std::size_t(1), std::multiplies<>());
secondary_stride = adjust_secondary_stride(ev.strides()[ev.dimension() - 2],
*(ev.shape().end() - 1));
}
else
{
n_iters = std::accumulate(ev.shape().begin() + 1, ev.shape().end(),
std::size_t(1), std::multiplies<>());
secondary_stride = adjust_secondary_stride(ev.strides()[1],
*(ev.shape().begin()));
}
std::ptrdiff_t offset = 0;
for (std::size_t i = 0; i < n_iters; ++i, offset += secondary_stride)
{
fct(ev.data() + offset, ev.data() + offset + secondary_stride);
}
}
template <class E>
inline std::size_t leading_axis(const E& e)
{
if (e.layout() == layout_type::row_major)
{
return e.dimension() - 1;
}
else if (e.layout() == layout_type::column_major)
{
return 0;
}
XTENSOR_THROW(std::runtime_error, "Layout not supported.");
}
// get permutations to transpose and reverse-transpose array
inline std::pair<dynamic_shape<std::size_t>, dynamic_shape<std::size_t>>
get_permutations(std::size_t dim, std::size_t ax, layout_type layout)
{
dynamic_shape<std::size_t> permutation(dim);
std::iota(permutation.begin(), permutation.end(), std::size_t(0));
permutation.erase(permutation.begin() + std::ptrdiff_t(ax));
if (layout == layout_type::row_major)
{
permutation.push_back(ax);
}
else
{
permutation.insert(permutation.begin(), ax);
}
// TODO find a more clever way to get reverse permutation?
dynamic_shape<std::size_t> reverse_permutation;
for (std::size_t i = 0; i < dim; ++i)
{
auto it = std::find(permutation.begin(), permutation.end(), i);
reverse_permutation.push_back(std::size_t(std::distance(permutation.begin(), it)));
}
return std::make_pair(std::move(permutation), std::move(reverse_permutation));
}
template <class E, class R, class F>
inline auto run_lambda_over_axis(const E& e, R& res, std::size_t axis, F&& lambda)
{
if (axis != detail::leading_axis(e))
{
dynamic_shape<std::size_t> permutation, reverse_permutation;
std::tie(permutation, reverse_permutation) = get_permutations(e.dimension(), axis, e.layout());
res = transpose(e, permutation);
detail::call_over_leading_axis(res, std::forward<F>(lambda));
res = transpose(res, reverse_permutation);
}
else
{
res = e;
detail::call_over_leading_axis(res, std::forward<F>(lambda));
}
}
template <class VT>
struct flatten_sort_result_type_impl
{
using type = VT;
};
template <class VT, std::size_t N, layout_type L>
struct flatten_sort_result_type_impl<xtensor<VT, N, L>>
{
using type = xtensor<VT, 1, L>;
};
template <class VT, class S, layout_type L>
struct flatten_sort_result_type_impl<xtensor_fixed<VT, S, L>>
{
using type = xtensor_fixed<VT, xshape<fixed_compute_size<S>::value>, L>;
};
template <class VT>
struct flatten_sort_result_type
: flatten_sort_result_type_impl<common_tensor_type_t<VT>>
{
};
template <class VT>
using flatten_sort_result_type_t = typename flatten_sort_result_type<VT>::type;
template <class E, class R = flatten_sort_result_type_t<E>>
inline auto flat_sort_impl(const xexpression<E>& e)
{
const auto& de = e.derived_cast();
R ev;
ev.resize({de.size()});
std::copy(de.cbegin(), de.cend(), ev.begin());
std::sort(ev.begin(), ev.end());
return ev;
}
}
template <class E>
inline auto sort(const xexpression<E>& e, placeholders::xtuph /*t*/)
{
return detail::flat_sort_impl(e);
}
namespace detail
{
template <class T>
struct sort_eval_type
{
using type = typename T::temporary_type;
};
template <class T, std::size_t... I, layout_type L>
struct sort_eval_type<xtensor_fixed<T, fixed_shape<I...>, L>>
{
using type = xtensor<T, sizeof...(I), L>;
};
}
/**
* Sort xexpression (optionally along axis)
* The sort is performed using the ``std::sort`` functions.
* A copy of the xexpression is created and returned.
*
* @param e xexpression to sort
* @param axis axis along which sort is performed
*
* @return sorted array (copy)
*/
template <class E>
inline auto sort(const xexpression<E>& e, std::ptrdiff_t axis = -1)
{
using eval_type = typename detail::sort_eval_type<E>::type;
const auto& de = e.derived_cast();
if (de.dimension() == 1)
{
return detail::flat_sort_impl<std::decay_t<decltype(de)>, eval_type>(de);
}
std::size_t ax = normalize_axis(de.dimension(), axis);
eval_type res;
detail::run_lambda_over_axis(de, res, ax, [](auto begin, auto end) { std::sort(begin, end); });
return res;
}
namespace detail
{
template <class VT, class T>
struct rebind_value_type
{
using type = xarray<VT, xt::layout_type::dynamic>;
};
template <class VT, class EC, layout_type L>
struct rebind_value_type<VT, xarray<EC, L>>
{
using type = xarray<VT, L>;
};
template <class VT, class EC, std::size_t N, layout_type L>
struct rebind_value_type<VT, xtensor<EC, N, L>>
{
using type = xtensor<VT, N, L>;
};
template <class VT, class ET, class S, layout_type L>
struct rebind_value_type<VT, xtensor_fixed<ET, S, L>>
{
using type = xtensor_fixed<VT, S, L>;
};
template <class VT, class T>
struct flatten_rebind_value_type
{
using type = typename rebind_value_type<VT, T>::type;
};
template <class VT, class EC, std::size_t N, layout_type L>
struct flatten_rebind_value_type<VT, xtensor<EC, N, L>>
{
using type = xtensor<VT, 1, L>;
};
template <class VT, class ET, class S, layout_type L>
struct flatten_rebind_value_type<VT, xtensor_fixed<ET, S, L>>
{
using type = xtensor_fixed<VT, xshape<fixed_compute_size<S>::value>, L>;
};
template <class T>
struct argsort_result_type
{
using type = typename rebind_value_type<typename T::temporary_type::size_type,
typename T::temporary_type>::type;
};
template <class T>
struct linear_argsort_result_type
{
using type = typename flatten_rebind_value_type<typename T::temporary_type::size_type,
typename T::temporary_type>::type;
};
template <class Ed, class Ei>
inline void argsort_over_leading_axis(const Ed& data, Ei& inds)
{
std::size_t n_iters = 1;
std::ptrdiff_t data_secondary_stride, inds_secondary_stride;
if (data.layout() == layout_type::row_major)
{
n_iters = std::accumulate(data.shape().begin(), data.shape().end() - 1,
std::size_t(1), std::multiplies<>());
data_secondary_stride = data.shape(data.dimension() - 1);
inds_secondary_stride = inds.shape(inds.dimension() - 1);
}
else
{
n_iters = std::accumulate(data.shape().begin() + 1, data.shape().end(),
std::size_t(1), std::multiplies<>());
data_secondary_stride = data.shape(0);
inds_secondary_stride = inds.shape(0);
}
auto ptr = data.data();
auto indices_ptr = inds.data();
for (std::size_t i = 0; i < n_iters; ++i, ptr += data_secondary_stride, indices_ptr += inds_secondary_stride)
{
auto comp = [&ptr](std::size_t x, std::size_t y) {
return *(ptr + x) < *(ptr + y);
};
std::iota(indices_ptr, indices_ptr + inds_secondary_stride, 0);
std::sort(indices_ptr, indices_ptr + inds_secondary_stride, comp);
}
}
template <class E, class R = typename detail::linear_argsort_result_type<E>::type>
inline auto flatten_argsort_impl(const xexpression<E>& e)
{
const auto& de = e.derived_cast();
auto cit = de.template begin<layout_type::row_major>();
using const_iterator = decltype(cit);
auto ad = xiterator_adaptor<const_iterator, const_iterator>(cit, cit, de.size());
using result_type = R;
result_type result;
result.resize({de.size()});
auto comp = [&ad](std::size_t x, std::size_t y) {
return ad[x] < ad[y];
};
std::iota(result.begin(), result.end(), 0);
std::sort(result.begin(), result.end(), comp);
return result;
}
}
template <class E>
inline auto argsort(const xexpression<E>& e, placeholders::xtuph /*t*/)
{
return detail::flatten_argsort_impl(e);
}
/**
* Argsort xexpression (optionally along axis)
* Performs an indirect sort along the given axis. Returns an xarray
* of indices of the same shape as e that index data along the given axis in
* sorted order.
*
* @param e xexpression to argsort
* @param axis axis along which argsort is performed
*
* @return argsorted index array
*/
template <class E>
inline auto argsort(const xexpression<E>& e, std::ptrdiff_t axis = -1)
{
using eval_type = typename detail::sort_eval_type<E>::type;
using result_type = typename detail::argsort_result_type<eval_type>::type;
const auto& de = e.derived_cast();
std::size_t ax = normalize_axis(de.dimension(), axis);
if (de.dimension() == 1)
{
return detail::flatten_argsort_impl<E, result_type>(e);
}
if (ax != detail::leading_axis(de))
{
dynamic_shape<std::size_t> permutation, reverse_permutation;
std::tie(permutation, reverse_permutation) = detail::get_permutations(de.dimension(), ax, de.layout());
eval_type ev = transpose(de, permutation);
result_type res = result_type::from_shape(ev.shape());
detail::argsort_over_leading_axis(ev, res);
res = transpose(res, reverse_permutation);
return res;
}
else
{
result_type res = result_type::from_shape(de.shape());
detail::argsort_over_leading_axis(de, res);
return res;
}
}
/************************************************
* Implementation of partition and argpartition *
************************************************/
/**
* Partially sort xexpression
*
* Partition shuffles the xexpression in a way so that the kth element
* in the returned xexpression is in the place it would appear in a sorted
* array and all elements smaller than this entry are placed (unsorted) before.
*
* The optional third parameter can either be an axis or ``xnone()`` in which case
* the xexpression will be flattened.
*
* This function uses ``std::nth_element`` internally.
*
* \code{cpp}
* xt::xarray<float> a = {1, 10, -10, 123};
* std::cout << xt::partition(a, 0) << std::endl; // {-10, 1, 123, 10} the correct entry at index 0
* std::cout << xt::partition(a, 3) << std::endl; // {1, 10, -10, 123} the correct entry at index 3
* std::cout << xt::partition(a, {0, 3}) << std::endl; // {-10, 1, 10, 123} the correct entries at index 0 and 3
* \endcode
*
* @param e input xexpression
* @param kth_container a container of ``indices`` that should contain the correctly sorted value
* @param axis either integer (default = -1) to sort along last axis or ``xnone()`` to flatten before sorting
*
* @return partially sorted xcontainer
*/
template <class E, class C, class R = detail::flatten_sort_result_type_t<E>,
class = std::enable_if_t<!xtl::is_integral<C>::value, int>>
inline R partition(const xexpression<E>& e, const C& kth_container, placeholders::xtuph /*ax*/)
{
const auto& de = e.derived_cast();
R ev = R::from_shape({ de.size() });
C kth_copy = kth_container;
if (kth_copy.size() > 1)
{
std::sort(kth_copy.begin(), kth_copy.end());
}
std::copy(de.storage_cbegin(), de.storage_cend(), ev.storage_begin()); // flatten
std::size_t k_last = kth_copy.back();
std::nth_element(ev.storage_begin(), ev.storage_begin() + k_last, ev.storage_end());
for (auto it = (kth_copy.rbegin() + 1); it != kth_copy.rend(); ++it)
{
std::nth_element(ev.storage_begin(), ev.storage_begin() + *it, ev.storage_begin() + k_last);
k_last = *it;
}
return ev;
}
template <class E, class I, std::size_t N, class R = detail::flatten_sort_result_type_t<E>>
inline R partition(const xexpression<E>& e, const I(&kth_container)[N], placeholders::xtuph tag)
{
return partition(e, xtl::forward_sequence<std::array<std::size_t, N>, decltype(kth_container)>(kth_container), tag);
}
template <class E, class R = detail::flatten_sort_result_type_t<E>>
inline R partition(const xexpression<E>& e, std::size_t kth, placeholders::xtuph tag)
{
return partition(e, std::array<std::size_t, 1>({kth}), tag);
}
template <class E, class C, class = std::enable_if_t<!xtl::is_integral<C>::value, int>>
inline auto partition(const xexpression<E>& e, const C& kth_container, std::ptrdiff_t axis = -1)
{
using eval_type = typename detail::sort_eval_type<E>::type;
const auto& de = e.derived_cast();
if (de.dimension() == 1)
{
return partition<E, C, eval_type>(de, kth_container, xnone());
}
C kth_copy = kth_container;
if (kth_copy.size() > 1)
{
std::sort(kth_copy.begin(), kth_copy.end());
}
std::size_t ax = normalize_axis(de.dimension(), axis);
eval_type res;
std::size_t kth = kth_copy.back();
dynamic_shape<std::size_t> permutation, reverse_permutation;
bool is_leading_axis = (ax == detail::leading_axis(de));
if (!is_leading_axis)
{
std::tie(permutation, reverse_permutation) = detail::get_permutations(de.dimension(), ax, de.layout());
res = transpose(de, permutation);
}
else
{
res = de;
}
auto lambda = [&kth](auto begin, auto end) {
std::nth_element(begin, begin + kth, end);
};
detail::call_over_leading_axis(res, lambda);
for (auto it = kth_copy.rbegin() + 1; it != kth_copy.rend(); ++it)
{
kth = *it;
detail::call_over_leading_axis(res, lambda);
}
if (!is_leading_axis)
{
res = transpose(res, reverse_permutation);
}
return res;
}
template <class E, class T, std::size_t N>
inline auto partition(const xexpression<E>& e, const T(&kth_container)[N], std::ptrdiff_t axis = -1)
{
return partition(e, xtl::forward_sequence<std::array<std::size_t, N>, decltype(kth_container)>(kth_container), axis);
}
template <class E>
inline auto partition(const xexpression<E>& e, std::size_t kth, std::ptrdiff_t axis = -1)
{
return partition(e, std::array<std::size_t, 1>({kth}), axis);
}
/**
* Partially sort arguments
*
* Argpartition shuffles the indices to a xexpression in a way so that the index for the
* kth element in the returned xexpression is in the place it would appear in a sorted
* array and all elements smaller than this entry are placed (unsorted) before.
*
* The optional third parameter can either be an axis or ``xnone()`` in which case
* the xexpression will be flattened.
*
* This function uses ``std::nth_element`` internally.
*
* \code{cpp}
* xt::xarray<float> a = {1, 10, -10, 123};
* std::cout << xt::argpartition(a, 0) << std::endl; // {2, 0, 3, 1} the correct entry at index 0
* std::cout << xt::argpartition(a, 3) << std::endl; // {0, 1, 2, 3} the correct entry at index 3
* std::cout << xt::argpartition(a, {0, 3}) << std::endl; // {2, 0, 1, 3} the correct entries at index 0 and 3
* \endcode
*
* @param e input xexpression
* @param kth_container a container of ``indices`` that should contain the correctly sorted value
* @param axis either integer (default = -1) to sort along last axis or ``xnone()`` to flatten before sorting
*
* @return xcontainer with indices of partial sort of input
*/
template <class E, class C,
class R = typename detail::linear_argsort_result_type<typename detail::sort_eval_type<E>::type>::type,
class = std::enable_if_t<!xtl::is_integral<C>::value, int>>
inline R argpartition(const xexpression<E>& e, const C& kth_container, placeholders::xtuph)
{
using eval_type = typename detail::sort_eval_type<E>::type;
using result_type = typename detail::linear_argsort_result_type<eval_type>::type;
const auto& de = e.derived_cast();
result_type ev = result_type::from_shape({ de.size() });
C kth_copy = kth_container;
if (kth_copy.size() > 1)
{
std::sort(kth_copy.begin(), kth_copy.end());
}
auto arg_lambda = [&de](std::size_t a, std::size_t b) {
return de[a] < de[b];
};
std::iota(ev.storage_begin(), ev.storage_end(), 0);
std::size_t k_last = kth_copy.back();
std::nth_element(ev.storage_begin(), ev.storage_begin() + k_last, ev.storage_end(), arg_lambda);
for (auto it = (kth_copy.rbegin() + 1); it != kth_copy.rend(); ++it)
{
std::nth_element(ev.storage_begin(), ev.storage_begin() + *it, ev.storage_begin() + k_last, arg_lambda);
k_last = *it;
}
return ev;
}
template <class E, class I, std::size_t N>
inline auto argpartition(const xexpression<E>& e, const I(&kth_container)[N], placeholders::xtuph tag)
{
return argpartition(e, xtl::forward_sequence<std::array<std::size_t, N>, decltype(kth_container)>(kth_container), tag);
}
template <class E>
inline auto argpartition(const xexpression<E>& e, std::size_t kth, placeholders::xtuph tag)
{
return argpartition(e, std::array<std::size_t, 1>({kth}), tag);
}
namespace detail
{
template <class Ed, class Ei>
inline void argpartition_over_leading_axis(const Ed& data, Ei& inds, std::size_t kth, std::ptrdiff_t last)
{
std::size_t n_iters = 1;
std::ptrdiff_t data_secondary_stride, inds_secondary_stride;
if (data.layout() == layout_type::row_major)
{
n_iters = std::accumulate(data.shape().begin(), data.shape().end() - 1,
std::size_t(1), std::multiplies<>());
data_secondary_stride = data.strides()[data.dimension() - 2];
inds_secondary_stride = inds.strides()[inds.dimension() - 2];
}
else
{
n_iters = std::accumulate(data.shape().begin() + 1, data.shape().end(),
std::size_t(1), std::multiplies<>());
data_secondary_stride = data.strides()[1];
inds_secondary_stride = inds.strides()[1];
}
auto ptr = data.data();
auto indices_ptr = inds.data();
auto comp = [&ptr](std::size_t x, std::size_t y) {
return *(ptr + x) < *(ptr + y);
};
if (last == -1) // initialize
{
for (std::size_t i = 0; i < n_iters; ++i, ptr += data_secondary_stride, indices_ptr += inds_secondary_stride)
{
std::iota(indices_ptr, indices_ptr + inds_secondary_stride, 0);
std::nth_element(indices_ptr, indices_ptr + kth, indices_ptr + inds_secondary_stride, comp);
}
}
else
{
for (std::size_t i = 0; i < n_iters; ++i, ptr += data_secondary_stride, indices_ptr += inds_secondary_stride)
{
std::nth_element(indices_ptr, indices_ptr + kth, indices_ptr + last, comp);
}
}
}
}
template <class E, class C, class = std::enable_if_t<!xtl::is_integral<C>::value, int>>
inline auto argpartition(const xexpression<E>& e, const C& kth_container, std::ptrdiff_t axis = -1)
{
using eval_type = typename detail::sort_eval_type<E>::type;
using result_type = typename detail::argsort_result_type<eval_type>::type;
const auto& de = e.derived_cast();
std::size_t ax = normalize_axis(de.dimension(), axis);
if (de.dimension() == 1)
{
return argpartition<E, C, result_type>(e, kth_container, xnone());
}
C kth_copy = kth_container;
if (kth_copy.size() > 1)
{
std::sort(kth_copy.begin(), kth_copy.end());
}
eval_type ev;
result_type res;
dynamic_shape<std::size_t> permutation, reverse_permutation;
bool is_leading_axis = (ax == detail::leading_axis(de));
if (!is_leading_axis)
{
std::tie(permutation, reverse_permutation) = detail::get_permutations(de.dimension(), ax, de.layout());
ev = transpose(de, permutation);
}
else
{
ev = de;
}
res.resize(ev.shape());
std::size_t kth = kth_copy.back();
detail::argpartition_over_leading_axis(ev, res, kth, -1);
for (auto it = (kth_copy.rbegin() + 1); it != kth_copy.rend(); ++it)
{
detail::argpartition_over_leading_axis(ev, res, *it, static_cast<std::ptrdiff_t>(kth));
kth = *it;
}
if (!is_leading_axis)
{
res = transpose(res, reverse_permutation);
}
return res;
}
template <class E, class I, std::size_t N>
inline auto argpartition(const xexpression<E>& e, const I(&kth_container)[N], std::ptrdiff_t axis = -1)
{
return argpartition(e, xtl::forward_sequence<std::array<std::size_t, N>, decltype(kth_container)>(kth_container), axis);
}
template <class E>
inline auto argpartition(const xexpression<E>& e, std::size_t kth, std::ptrdiff_t axis = -1)
{
return argpartition(e, std::array<std::size_t, 1>({kth}), axis);
}
template <class E>
inline typename std::decay_t<E>::value_type median(E&& e)
{
using value_type = typename std::decay_t<E>::value_type;
auto sz = e.size();
if (sz % 2 == 0)
{
std::size_t szh = sz / 2; // integer floor div
std::array<std::size_t, 2> kth = {szh - 1, szh};
auto values = xt::partition(xt::flatten(e), kth);
return (values[kth[0]] + values[kth[1]]) / value_type(2);
}
else
{
std::array<std::size_t, 1> kth = {(sz - 1) / 2};
auto values = xt::partition(xt::flatten(e), kth);
return values[kth[0]];
}
}
/**
* Find the median along the specified axis
*
* Given a vector V of length N, the median of V is the middle value of a
* sorted copy of V, V_sorted - i e., V_sorted[(N-1)/2], when N is odd,
* and the average of the two middle values of V_sorted when N is even.
*
* @param axis axis along which the medians are computed.
* If not set, computes the median along a flattened version of the input.
* @param e input xexpression
* @return median value
*/
template <class E>
inline auto median(E&& e, std::ptrdiff_t axis)
{
std::size_t ax = normalize_axis(e.dimension(), axis);
std::size_t sz = e.shape()[ax];
xstrided_slice_vector sv(e.dimension(), xt::all());
if (sz % 2 == 0)
{
std::size_t szh = sz / 2; // integer floor div
std::array<std::size_t, 2> kth = {szh - 1, szh};
auto values = xt::partition(std::forward<E>(e), kth, static_cast<ptrdiff_t>(ax));
sv[ax] = xt::range(szh - 1, szh + 1);
return xt::mean(xt::strided_view(std::move(values), std::move(sv)), {ax});
}
else
{
std::size_t szh = (sz - 1) / 2;
std::array<std::size_t, 1> kth = {(sz - 1) / 2};
auto values = xt::partition(std::forward<E>(e), kth, static_cast<ptrdiff_t>(ax));
sv[ax] = xt::range(szh, szh + 1);
return xt::mean(xt::strided_view(std::move(values), std::move(sv)), {ax});
}
}
namespace detail
{
template <class T>
struct argfunc_result_type
{
using type = xarray<std::size_t>;
};
template <class T, std::size_t N>
struct argfunc_result_type<xtensor<T, N>>
{
using type = xtensor<std::size_t, N - 1>;
};
template <class IT, class F>
inline std::size_t cmp_idx(IT iter, IT end, std::ptrdiff_t inc, F&& cmp)
{
std::size_t idx = 0;
auto min = *iter;
iter += inc;
for (std::size_t i = 1; iter < end; iter += inc, ++i)
{
if (cmp(*iter, min))
{
min = *iter;
idx = i;
}
}
return idx;
}
template <layout_type L, class E, class F>
inline xtensor<std::size_t, 0> arg_func_impl(const E& e, F&& f)
{
return cmp_idx(e.template begin<L>(),
e.template end<L>(), 1,
std::forward<F>(f));
}
template <layout_type L, class E, class F>
inline typename argfunc_result_type<E>::type
arg_func_impl(const E& e, std::size_t axis, F&& cmp)
{
using eval_type = typename detail::sort_eval_type<E>::type;
using value_type = typename E::value_type;
using result_type = typename argfunc_result_type<E>::type;
using result_shape_type = typename result_type::shape_type;
if (e.dimension() == 1)
{
return arg_func_impl<L>(e, std::forward<F>(cmp));
}
result_shape_type alt_shape;
xt::resize_container(alt_shape, e.dimension() - 1);
// Excluding copy, copy all of shape except for axis
std::copy(e.shape().cbegin(), e.shape().cbegin() + std::ptrdiff_t(axis), alt_shape.begin());
std::copy(e.shape().cbegin() + std::ptrdiff_t(axis) + 1, e.shape().cend(), alt_shape.begin() + std::ptrdiff_t(axis));
result_type result = result_type::from_shape(std::move(alt_shape));
auto result_iter = result.template begin<L>();
auto arg_func_lambda = [&result_iter, &cmp](auto begin, auto end) {
std::size_t idx = 0;
value_type val = *begin;
++begin;
for (std::size_t i = 1; begin != end; ++begin, ++i)
{
if (cmp(*begin, val))
{
val = *begin;
idx = i;
}
}
*result_iter = idx;
++result_iter;
};
if (axis != detail::leading_axis(e))
{
dynamic_shape<std::size_t> permutation, reverse_permutation;
std::tie(permutation, reverse_permutation) = detail::get_permutations(e.dimension(), axis, e.layout());
// note: creating copy
eval_type input = transpose(e, permutation);
detail::call_over_leading_axis(input, arg_func_lambda);
return result;
}
else
{
auto&& input = eval(e);
detail::call_over_leading_axis(input, arg_func_lambda);
return result;
}
}
}
template <layout_type L = XTENSOR_DEFAULT_TRAVERSAL, class E>
inline auto argmin(const xexpression<E>& e)
{
using value_type = typename E::value_type;
auto&& ed = eval(e.derived_cast());
return detail::arg_func_impl<L>(ed, std::less<value_type>());
}
/**
* Find position of minimal value in xexpression
*
* @param e input xexpression
* @param axis select axis (or none)
*
* @return returns xarray with positions of minimal value
*/
template <layout_type L = XTENSOR_DEFAULT_TRAVERSAL, class E>
inline auto argmin(const xexpression<E>& e, std::ptrdiff_t axis)
{
using value_type = typename E::value_type;
auto&& ed = eval(e.derived_cast());
std::size_t ax = normalize_axis(ed.dimension(), axis);
return detail::arg_func_impl<L>(ed, ax, std::less<value_type>());
}
template <layout_type L = XTENSOR_DEFAULT_TRAVERSAL, class E>
inline auto argmax(const xexpression<E>& e)
{
using value_type = typename E::value_type;
auto&& ed = eval(e.derived_cast());
return detail::arg_func_impl<L>(ed, std::greater<value_type>());
}
/**
* Find position of maximal value in xexpression
*
* @param e input xexpression
* @param axis select axis (or none)
*
* @return returns xarray with positions of maximal value
*/
template <layout_type L = XTENSOR_DEFAULT_TRAVERSAL, class E>
inline auto argmax(const xexpression<E>& e, std::ptrdiff_t axis)
{
using value_type = typename E::value_type;
auto&& ed = eval(e.derived_cast());
std::size_t ax = normalize_axis(ed.dimension(), axis);
return detail::arg_func_impl<L>(ed, ax, std::greater<value_type>());
}
/**
* Find unique elements of a xexpression. This returns a flattened xtensor with
* sorted, unique elements from the original expression.
*
* @param e input xexpression (will be flattened)
*/
template <class E>
inline auto unique(const xexpression<E>& e)
{
auto sorted = sort(e, xnone());
auto end = std::unique(sorted.begin(), sorted.end());
std::size_t sz = static_cast<std::size_t>(std::distance(sorted.begin(), end));
// TODO check if we can shrink the vector without reallocation
using value_type = typename E::value_type;
auto result = xtensor<value_type, 1>::from_shape({sz});
std::copy(sorted.begin(), end, result.begin());
return result;
}
/**
* Find the set difference of two xexpressions. This returns a flattened xtensor with
* the sorted, unique values in ar1 that are not in ar2.
*
* @param ar1 input xexpression (will be flattened)
* @param ar2 input xexpression
*/
template <class E1, class E2>
inline auto setdiff1d(const xexpression<E1>& ar1, const xexpression<E2>& ar2)
{
using value_type = typename E1::value_type;
auto unique1 = unique(ar1);
auto unique2 = unique(ar2);
auto tmp = xtensor<value_type, 1>::from_shape({unique1.size()});
auto end = std::set_difference(
unique1.begin(), unique1.end(),
unique2.begin(), unique2.end(),
tmp.begin()
);
std::size_t sz = static_cast<std::size_t>(std::distance(tmp.begin(), end));
auto result = xtensor<value_type, 1>::from_shape({sz});
std::copy(tmp.begin(), end, result.begin());
return result;
}
}
#endif