forked from swiftlang/swift
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRValue.cpp
565 lines (470 loc) · 18.2 KB
/
RValue.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
//===--- RValue.cpp - Exploded RValue Representation ------------*- C++ -*-===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// A storage structure for holding a destructured rvalue with an optional
// cleanup(s).
// Ownership of the rvalue can be "forwarded" to disable the associated
// cleanup(s).
//
//===----------------------------------------------------------------------===//
#include "Initialization.h"
#include "RValue.h"
#include "swift/SIL/SILArgument.h"
#include "swift/AST/CanTypeVisitor.h"
#include "swift/Basic/Fallthrough.h"
using namespace swift;
using namespace Lowering;
static unsigned getTupleSize(CanType t) {
if (TupleType *tt = dyn_cast<TupleType>(t))
return tt->getNumElements();
return 1;
}
/// Return the number of rvalue elements in the given canonical type.
static unsigned getRValueSize(CanType type) {
if (auto tupleType = dyn_cast<TupleType>(type)) {
unsigned count = 0;
for (auto eltType : tupleType.getElementTypes())
count += getRValueSize(eltType);
return count;
}
return 1;
}
namespace {
class ExplodeTupleValue
: public CanTypeVisitor<ExplodeTupleValue,
/*RetTy=*/ void,
/*Args...=*/ ManagedValue>
{
public:
std::vector<ManagedValue> &values;
SILGenFunction &gen;
SILLocation loc;
ExplodeTupleValue(std::vector<ManagedValue> &values,
SILGenFunction &gen, SILLocation loc)
: values(values), gen(gen), loc(loc)
{
}
void visitType(CanType formalType, ManagedValue v) {
values.push_back(v);
}
void visitTupleType(CanTupleType tupleFormalType, ManagedValue tupleMV) {
bool isPlusZero = tupleMV.isPlusZeroRValueOrTrivial();
SILValue tuple = tupleMV.forward(gen);
for (auto i : indices(tupleFormalType->getElements())) {
CanType eltFormalType = tupleFormalType.getElementType(i);
assert(eltFormalType->isMaterializable());
auto eltTy = tuple.getType().getTupleElementType(i);
assert(eltTy.isAddress() == tuple.getType().isAddress());
auto &eltTI = gen.getTypeLowering(eltTy);
// Project the element.
SILValue elt;
if (tuple.getType().isObject()) {
assert(eltTI.isLoadable());
elt = gen.B.createTupleExtract(loc, tuple, i, eltTy);
} else {
elt = gen.B.createTupleElementAddr(loc, tuple, i, eltTy);
// RValue has an invariant that loadable values have been
// loaded. Except it's not really an invariant, because
// argument emission likes to lie sometimes.
if (eltTI.isLoadable()) {
elt = gen.B.createLoad(loc, elt);
}
}
// If we're returning a +1 value, emit a cleanup for the member
// to cover for the cleanup we disabled for the tuple aggregate.
auto eltMV = isPlusZero ? ManagedValue::forUnmanaged(elt)
: gen.emitManagedRValueWithCleanup(elt, eltTI);
visit(eltFormalType, eltMV);
}
}
};
enum class ImplodeKind { Unmanaged, Forward, Copy };
template<ImplodeKind KIND>
class ImplodeLoadableTupleValue
: public CanTypeVisitor<ImplodeLoadableTupleValue<KIND>,
/*RetTy=*/ SILValue,
/*Args...=*/ SILLocation>
{
public:
ArrayRef<ManagedValue> values;
SILGenFunction &gen;
static SILValue getValue(SILGenFunction &gen, ManagedValue v, SILLocation l) {
switch (KIND) {
case ImplodeKind::Unmanaged:
return v.getUnmanagedValue();
case ImplodeKind::Forward:
return v.forward(gen);
case ImplodeKind::Copy:
return v.copyUnmanaged(gen, l).forward(gen);
}
}
ImplodeLoadableTupleValue(ArrayRef<ManagedValue> values,
SILGenFunction &gen)
: values(values), gen(gen)
{}
SILValue visitType(CanType t, SILLocation l) {
SILValue result = getValue(gen, values[0], l);
values = values.slice(1);
return result;
}
SILValue visitTupleType(CanTupleType t, SILLocation l) {
SmallVector<SILValue, 4> elts;
for (auto fieldTy : t.getElementTypes())
elts.push_back(this->visit(fieldTy, l));
SILType ty = gen.getLoweredLoadableType(t);
return gen.B.createTuple(l, ty, elts);
}
~ImplodeLoadableTupleValue() {
}
};
template<ImplodeKind KIND>
class ImplodeAddressOnlyTuple
: public CanTypeVisitor<ImplodeAddressOnlyTuple<KIND>,
/*RetTy=*/ void,
/*Args...=*/ SILValue, SILLocation>
{
public:
ArrayRef<ManagedValue> values;
SILGenFunction &gen;
ImplodeAddressOnlyTuple(ArrayRef<ManagedValue> values,
SILGenFunction &gen)
: values(values), gen(gen)
{}
void visitType(CanType t, SILValue address, SILLocation l) {
ManagedValue v = values[0];
switch (KIND) {
case ImplodeKind::Unmanaged:
llvm_unreachable("address-only types always managed!");
case ImplodeKind::Forward:
v.forwardInto(gen, l, address);
break;
case ImplodeKind::Copy:
v.copyInto(gen, address, l);
break;
}
values = values.slice(1);
}
void visitTupleType(CanTupleType t, SILValue address, SILLocation l) {
for (unsigned n = 0, size = t->getNumElements(); n < size; ++n) {
CanType fieldCanTy = t.getElementType(n);
SILType fieldTy = gen.getLoweredType(fieldCanTy);
SILValue fieldAddr = gen.B.createTupleElementAddr(l,
address, n,
fieldTy.getAddressType());
this->visit(fieldCanTy, fieldAddr, l);
}
}
~ImplodeAddressOnlyTuple() {
assert(values.empty() && "values not exhausted imploding tuple?!");
}
};
template<ImplodeKind KIND>
static SILValue implodeTupleValues(ArrayRef<ManagedValue> values,
SILGenFunction &gen,
CanType tupleType, SILLocation l) {
// Non-tuples don't need to be imploded.
if (!isa<TupleType>(tupleType)) {
assert(values.size() == 1 && "exploded non-tuple value?!");
return ImplodeLoadableTupleValue<KIND>::getValue(gen, values[0], l);
}
SILType loweredType = gen.getLoweredType(tupleType);
// To implode an address-only tuple, we need to create a buffer to hold the
// result tuple.
if (loweredType.isAddressOnly(gen.F.getModule())) {
assert(KIND != ImplodeKind::Unmanaged &&
"address-only values are always managed!");
SILValue buffer = gen.emitTemporaryAllocation(l, loweredType);
ImplodeAddressOnlyTuple<KIND>(values, gen).visit(tupleType, buffer, l);
return buffer;
}
// To implode loadable tuples, we just need to combine the elements with
// TupleInsts.
return ImplodeLoadableTupleValue<KIND>(values, gen).visit(tupleType, l);
}
class EmitBBArguments : public CanTypeVisitor<EmitBBArguments,
/*RetTy*/ RValue>
{
public:
SILGenFunction &gen;
SILBasicBlock *parent;
SILLocation loc;
bool functionArgs;
EmitBBArguments(SILGenFunction &gen, SILBasicBlock *parent,
SILLocation l, bool functionArgs)
: gen(gen), parent(parent), loc(l), functionArgs(functionArgs) {}
RValue visitType(CanType t) {
SILValue arg = new (gen.SGM.M)
SILArgument(parent, gen.getLoweredType(t), loc.getAsASTNode<ValueDecl>());
ManagedValue mv = isa<InOutType>(t)
? ManagedValue::forLValue(arg)
: gen.emitManagedRValueWithCleanup(arg);
// If the value is a (possibly optional) ObjC block passed into the entry
// point of the function, then copy it so we can treat the value reliably
// as a heap object. Escape analysis can eliminate this copy if it's
// unneeded during optimization.
CanType objectType = t;
if (auto theObjTy = t.getAnyOptionalObjectType())
objectType = theObjTy;
if (functionArgs
&& isa<FunctionType>(objectType)
&& cast<FunctionType>(objectType)->getRepresentation()
== FunctionType::Representation::Block) {
SILValue blockCopy = gen.B.createCopyBlock(loc, mv.getValue());
mv = gen.emitManagedRValueWithCleanup(blockCopy);
}
return RValue(gen, loc, t, mv);
}
RValue visitTupleType(CanTupleType t) {
RValue rv{t};
for (auto fieldType : t.getElementTypes())
rv.addElement(visit(fieldType));
return rv;
}
};
} // end anonymous namespace
/// Perform a copy or init operation from an array of ManagedValue (from an
/// RValue) into an initialization. The RValue will have one scalar ManagedValue
/// for each exploded tuple element in the RValue, so this needs to make the
/// shape of the initialization match the available elements. This can be done
/// one one of two ways:
///
/// 1) recursively scalarize down the initialization on demand if the type of
/// the RValue is tuple type and the initialization supports it.
/// 2) implode the corresponding values in the RValue to a scalar value of
/// tuple type and process them as a unit.
///
/// We prefer to use approach #1 since it generates better code.
///
template <ImplodeKind KIND>
static void copyOrInitValuesInto(Initialization *init,
ArrayRef<ManagedValue> &values, CanType type,
SILLocation loc, SILGenFunction &gen) {
static_assert(KIND == ImplodeKind::Forward ||
KIND == ImplodeKind::Copy, "Not handled by init");
bool isInit = (KIND == ImplodeKind::Forward);
// If the element has non-tuple type, just serve it up to the initialization.
auto tupleType = dyn_cast<TupleType>(type);
if (!tupleType) {
// We take the first value.
ManagedValue result = values[0];
values = values.slice(1);
init->copyOrInitValueInto(result, isInit, loc, gen);
init->finishInitialization(gen);
return;
}
bool implodeTuple = false;
if (auto Address = init->getAddressOrNull()) {
if (isa<GlobalAddrInst>(Address) &&
gen.getTypeLowering(type).getLoweredType().isTrivial(gen.SGM.M)) {
// Implode tuples in initialization of globals if they are
// of trivial types.
implodeTuple = true;
}
}
// If we can satisfy the tuple type by breaking up the aggregate
// initialization, do so.
if (!implodeTuple && init->canSplitIntoSubelementAddresses()) {
SmallVector<InitializationPtr, 4> subInitBuf;
auto subInits = init->getSubInitializationsForTuple(gen, type,
subInitBuf, loc);
assert(subInits.size() == tupleType->getNumElements() &&
"initialization does not match tuple?!");
for (unsigned i = 0, e = subInits.size(); i < e; ++i)
copyOrInitValuesInto<KIND>(subInits[i].get(), values,
tupleType.getElementType(i), loc, gen);
return;
}
// Otherwise, process this by turning the values corresponding to the tuple
// into a single value (through an implosion) and then binding that value to
// our initialization.
SILValue scalar = implodeTupleValues<KIND>(values, gen, type, loc);
// This will have just used up the first values in the list, pop them off.
values = values.slice(getRValueSize(type));
init->copyOrInitValueInto(ManagedValue::forUnmanaged(scalar), isInit, loc,
gen);
init->finishInitialization(gen);
}
RValue::RValue(ArrayRef<ManagedValue> values, CanType type)
: values(values.begin(), values.end()), type(type), elementsToBeAdded(0) {
if (values.size() == 1 && values[0].isInContext()) {
values = ArrayRef<ManagedValue>();
type = CanType();
elementsToBeAdded = Used;
return;
}
}
RValue::RValue(SILGenFunction &gen, SILLocation l, CanType formalType,
ManagedValue v)
: type(formalType), elementsToBeAdded(0)
{
assert(v && "creating r-value with consumed value");
if (v.isInContext()) {
type = CanType();
elementsToBeAdded = Used;
return;
}
ExplodeTupleValue(values, gen, l).visit(formalType, v);
assert(values.size() == getRValueSize(type));
}
RValue::RValue(SILGenFunction &gen, Expr *expr, ManagedValue v)
: type(expr->getType()->getCanonicalType()), elementsToBeAdded(0) {
if (v.isInContext()) {
type = CanType();
elementsToBeAdded = Used;
return;
}
assert(v && "creating r-value with consumed value");
ExplodeTupleValue(values, gen, expr).visit(type, v);
assert(values.size() == getRValueSize(type));
}
RValue::RValue(CanType type)
: type(type), elementsToBeAdded(getTupleSize(type)) {
}
void RValue::addElement(RValue &&element) & {
assert(!element.isUsed() && "adding consumed value to r-value");
assert(!isComplete() && "rvalue already complete");
assert(!isUsed() && "rvalue already used");
--elementsToBeAdded;
values.insert(values.end(),
element.values.begin(), element.values.end());
element.makeUsed();
assert(!isComplete() || values.size() == getRValueSize(type));
}
void RValue::addElement(SILGenFunction &gen, ManagedValue element,
CanType formalType, SILLocation l) & {
assert(element && "adding consumed value to r-value");
assert(!isComplete() && "rvalue already complete");
assert(!isUsed() && "rvalue already used");
--elementsToBeAdded;
ExplodeTupleValue(values, gen, l).visit(formalType, element);
assert(!isComplete() || values.size() == getRValueSize(type));
}
SILValue RValue::forwardAsSingleValue(SILGenFunction &gen, SILLocation l) && {
assert(isComplete() && "rvalue is not complete");
SILValue result
= implodeTupleValues<ImplodeKind::Forward>(values, gen, type, l);
makeUsed();
return result;
}
SILValue RValue::forwardAsSingleStorageValue(SILGenFunction &gen,
SILType storageType,
SILLocation l) && {
assert(isComplete() && "rvalue is not complete");
SILValue result = std::move(*this).forwardAsSingleValue(gen, l);
return gen.emitConversionFromSemanticValue(l, result, storageType);
}
void RValue::forwardInto(SILGenFunction &gen, Initialization *I,
SILLocation loc) && {
assert(isComplete() && "rvalue is not complete");
ArrayRef<ManagedValue> elts = values;
copyOrInitValuesInto<ImplodeKind::Forward>(I, elts, type, loc, gen);
}
void RValue::copyInto(SILGenFunction &gen, Initialization *I,
SILLocation loc) const & {
assert(isComplete() && "rvalue is not complete");
ArrayRef<ManagedValue> elts = values;
copyOrInitValuesInto<ImplodeKind::Copy>(I, elts, type, loc, gen);
}
ManagedValue RValue::getAsSingleValue(SILGenFunction &gen, SILLocation l) && {
// Avoid killing and re-emitting the cleanup if the enclosed value isn't a
// tuple.
if (!isa<TupleType>(type)) {
assert(values.size() == 1 && "exploded non-tuple?!");
ManagedValue result = values[0];
makeUsed();
return result;
}
// Forward into a single value, then install a cleanup on the resulting
// imploded value.
return gen.emitManagedRValueWithCleanup(
std::move(*this).forwardAsSingleValue(gen, l));
}
SILValue RValue::getUnmanagedSingleValue(SILGenFunction &gen,
SILLocation l) const & {
assert(isComplete() && "rvalue is not complete");
return implodeTupleValues<ImplodeKind::Unmanaged>(values, gen, type, l);
}
void RValue::forwardAll(SILGenFunction &gen,
SmallVectorImpl<SILValue> &dest) && {
assert(isComplete() && "rvalue is not complete");
for (auto value : values)
dest.push_back(value.forward(gen));
makeUsed();
}
void RValue::getAll(SmallVectorImpl<ManagedValue> &dest) && {
assert(isComplete() && "rvalue is not complete");
dest.append(values.begin(), values.end());
makeUsed();
}
void RValue::getAllUnmanaged(SmallVectorImpl<SILValue> &dest) const & {
assert(isComplete() && "rvalue is not complete");
for (auto value : values)
dest.push_back(value.getUnmanagedValue());
}
/// Return the range of indexes for the given tuple type element.
static std::pair<unsigned,unsigned>
getElementRange(CanTupleType tupleType, unsigned eltIndex) {
assert(eltIndex < tupleType->getNumElements());
unsigned begin = 0;
for (unsigned i = 0; i < eltIndex; ++i) {
begin += getRValueSize(tupleType.getElementType(i));
}
unsigned end = begin + getRValueSize(tupleType.getElementType(eltIndex));
return { begin, end };
}
RValue RValue::extractElement(unsigned n) && {
assert(isComplete() && "rvalue is not complete");
auto tupleTy = cast<TupleType>(type);
auto range = getElementRange(tupleTy, n);
unsigned from = range.first, to = range.second;
CanType eltType = cast<TupleType>(type).getElementType(n);
RValue element(llvm::makeArrayRef(values).slice(from, to - from), eltType);
makeUsed();
return element;
}
void RValue::extractElements(SmallVectorImpl<RValue> &elements) && {
assert(isComplete() && "rvalue is not complete");
unsigned from = 0;
for (auto eltType : cast<TupleType>(type).getElementTypes()) {
unsigned to = from + getRValueSize(eltType);
elements.push_back({llvm::makeArrayRef(values).slice(from, to - from),
eltType});
from = to;
}
assert(from == values.size());
makeUsed();
}
RValue::RValue(const RValue &copied, SILGenFunction &gen, SILLocation l)
: type(copied.type),
elementsToBeAdded(copied.elementsToBeAdded)
{
assert((copied.isComplete() || copied.isUsed())
&& "can't copy incomplete rvalue");
values.reserve(copied.values.size());
for (ManagedValue value : copied.values) {
values.push_back(value.copy(gen, l));
}
}
ManagedValue RValue::materialize(SILGenFunction &gen, SILLocation loc) && {
auto ¶mTL = gen.getTypeLowering(getType());
// If we're already materialized, we're done.
if (values.size() == 1 &&
values[0].getType() == paramTL.getLoweredType().getAddressType()) {
auto value = values[0];
makeUsed();
return value;
}
// Otherwise, emit to a temporary.
auto temp = gen.emitTemporary(loc, paramTL);
std::move(*this).forwardInto(gen, temp.get(), loc);
return temp->getManagedAddress();
}