-
Notifications
You must be signed in to change notification settings - Fork 6.5k
/
Copy pathconftest.py
881 lines (743 loc) · 30.3 KB
/
conftest.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
# Copyright 2021 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the 'License');
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an 'AS IS' BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
from __future__ import annotations
from collections.abc import Callable, Iterator
from dataclasses import dataclass
from datetime import datetime
import itertools
import json
import logging
import multiprocessing as mp
import os
import platform
import re
import subprocess
import time
from typing import Any
import uuid
from google.api_core import retry
import pytest
TIMEOUT_SEC = 30 * 60 # 30 minutes (in seconds)
@pytest.fixture(scope="session")
def project() -> str:
# This is set by the testing infrastructure.
project = os.environ["GOOGLE_CLOUD_PROJECT"]
run_cmd("gcloud", "config", "set", "project", project)
# Since everything requires the project, let's confiugre and show some
# debugging information here.
run_cmd("gcloud", "version")
run_cmd("gcloud", "config", "list")
return project
@pytest.fixture(scope="session")
def location() -> str:
# Override for local testing.
return os.environ.get("GOOGLE_CLOUD_LOCATION", "us-central1")
@pytest.fixture(scope="session")
def unique_id() -> str:
id = uuid.uuid4().hex[0:6]
print(f"unique_id: {id}")
return id
@pytest.fixture(scope="session")
def unique_name(test_name: str, unique_id: str) -> str:
return f"{test_name.replace('/', '-')}-{unique_id}"
@pytest.fixture(scope="session")
def bucket_name(test_name: str, location: str, unique_id: str) -> Iterator[str]:
# Override for local testing.
if "GOOGLE_CLOUD_BUCKET" in os.environ:
bucket_name = os.environ["GOOGLE_CLOUD_BUCKET"]
print(f"bucket_name: {bucket_name} (from GOOGLE_CLOUD_BUCKET)")
yield bucket_name
return
from google.cloud import storage
storage_client = storage.Client()
bucket_name = f"{test_name.replace('/', '-')}-{unique_id}"
bucket = storage_client.create_bucket(bucket_name, location=location)
print(f"bucket_name: {bucket_name}")
yield bucket_name
# Try to remove all files before deleting the bucket.
# Deleting a bucket with too many files results in an error.
try:
run_cmd("gsutil", "-m", "rm", "-rf", f"gs://{bucket_name}/*")
except RuntimeError:
# If no files were found and it fails, ignore the error.
pass
# Delete the bucket.
bucket.delete(force=True)
@pytest.fixture(scope="session")
def pubsub_topic(
test_name: str, project: str, unique_id: str
) -> Iterator[Callable[[str], str]]:
from google.cloud import pubsub
publisher = pubsub.PublisherClient()
created_topics = []
def create_topic(name: str) -> str:
unique_name = f"{test_name.replace('/', '-')}-{name}-{unique_id}"
topic_path = publisher.topic_path(project, unique_name)
topic = publisher.create_topic(name=topic_path)
print(f"pubsub_topic created: {topic.name}")
created_topics.append(topic.name)
return topic.name
yield create_topic
for topic_path in created_topics:
publisher.delete_topic(topic=topic_path)
print(f"pubsub_topic deleted: {topic_path}")
@pytest.fixture(scope="session")
def pubsub_subscription(
test_name: str, project: str, unique_id: str
) -> Iterator[Callable[[str, str], str]]:
from google.cloud import pubsub
subscriber = pubsub.SubscriberClient()
created_subscriptions = []
def create_subscription(name: str, topic_path: str) -> str:
unique_name = f"{test_name.replace('/', '-')}-{name}-{unique_id}"
subscription_path = subscriber.subscription_path(project, unique_name)
subscription = subscriber.create_subscription(
name=subscription_path, topic=topic_path
)
print(f"pubsub_subscription created: {subscription.name}")
created_subscriptions.append(subscription.name)
return subscription.name
yield create_subscription
for subscription_path in created_subscriptions:
subscriber.delete_subscription(subscription=subscription_path)
print(f"pubsub_subscription deleted: {subscription_path}")
def pubsub_publish(topic_path: str, messages: list[str]) -> None:
from google.cloud import pubsub
publisher = pubsub.PublisherClient()
futures = [publisher.publish(topic_path, msg.encode("utf-8")) for msg in messages]
_ = [future.result() for future in futures] # wait synchronously
print(f"pubsub_publish {len(messages)} message(s) to {topic_path}:")
for msg in messages:
print(f"- {repr(msg)}")
@retry.Retry(retry.if_exception_type(ValueError), timeout=TIMEOUT_SEC)
def pubsub_wait_for_messages(subscription_path: str) -> list[str]:
from google.cloud import pubsub
subscriber = pubsub.SubscriberClient()
with subscriber:
response = subscriber.pull(subscription=subscription_path, max_messages=10)
messages = [m.message.data.decode("utf-8") for m in response.received_messages]
if not messages:
raise ValueError("pubsub_wait_for_messages no messages received")
print(f"pubsub_receive got {len(messages)} message(s)")
for msg in messages:
print(f"- {repr(msg)}")
ack_ids = [m.ack_id for m in response.received_messages]
subscriber.acknowledge(subscription=subscription_path, ack_ids=ack_ids)
print(f"pubsub_receive ack messages")
return messages
def dataflow_job_url(project: str, location: str, job_id: str) -> str:
return f"https://console.cloud.google.com/dataflow/jobs/{location}/{job_id}?project={project}"
@retry.Retry(retry.if_exception_type(LookupError), timeout=TIMEOUT_SEC)
def dataflow_find_job_by_name(project: str, location: str, job_name: str) -> str:
from google.cloud import dataflow_v1beta3 as dataflow
# https://cloud.google.com/python/docs/reference/dataflow/latest/google.cloud.dataflow_v1beta3.services.jobs_v1_beta3.JobsV1Beta3Client#google_cloud_dataflow_v1beta3_services_jobs_v1_beta3_JobsV1Beta3Client_list_jobs
dataflow_client = dataflow.JobsV1Beta3Client()
request = dataflow.ListJobsRequest(
project_id=project,
location=location,
)
for job in dataflow_client.list_jobs(request):
if job.name == job_name:
return job.id
raise LookupError(f"dataflow_find_job_by_name job name not found: {job_name}")
@retry.Retry(retry.if_exception_type(ValueError), timeout=TIMEOUT_SEC)
def dataflow_wait_until_running(project: str, location: str, job_id: str) -> str:
from google.cloud import dataflow_v1beta3 as dataflow
from google.cloud.dataflow_v1beta3.types import JobView, JobState
# https://cloud.google.com/python/docs/reference/dataflow/latest/google.cloud.dataflow_v1beta3.services.jobs_v1_beta3.JobsV1Beta3Client#google_cloud_dataflow_v1beta3_services_jobs_v1_beta3_JobsV1Beta3Client_get_job
dataflow_client = dataflow.JobsV1Beta3Client()
request = dataflow.GetJobRequest(
project_id=project,
location=location,
job_id=job_id,
view=JobView.JOB_VIEW_SUMMARY,
)
response = dataflow_client.get_job(request)
job_url = dataflow_job_url(project, location, job_id)
state = response.current_state
if state == JobState.JOB_STATE_FAILED:
raise RuntimeError(f"Dataflow job failed unexpectedly\n{job_url}")
if state != JobState.JOB_STATE_RUNNING:
raise ValueError(f"Dataflow job is not running, state: {state.name}\n{job_url}")
return state.name
def dataflow_num_workers(project: str, location: str, job_id: str) -> int:
from google.cloud import dataflow_v1beta3 as dataflow
from google.cloud.dataflow_v1beta3.types import JobMessageImportance
# https://cloud.google.com/python/docs/reference/dataflow/latest/google.cloud.dataflow_v1beta3.services.messages_v1_beta3.MessagesV1Beta3Client#google_cloud_dataflow_v1beta3_services_messages_v1_beta3_MessagesV1Beta3Client_list_job_messages
dataflow_client = dataflow.MessagesV1Beta3Client()
request = dataflow.ListJobMessagesRequest(
project_id=project,
location=location,
job_id=job_id,
minimum_importance=JobMessageImportance.JOB_MESSAGE_BASIC,
)
response = dataflow_client.list_job_messages(request)._response
num_workers = [event.current_num_workers for event in response.autoscaling_events]
if num_workers:
return num_workers[-1]
return 0
def dataflow_cancel_job(project: str, location: str, job_id: str) -> None:
from google.cloud import dataflow_v1beta3 as dataflow
from google.cloud.dataflow_v1beta3.types import Job, JobState
# https://cloud.google.com/python/docs/reference/dataflow/latest/google.cloud.dataflow_v1beta3.services.jobs_v1_beta3.JobsV1Beta3Client#google_cloud_dataflow_v1beta3_services_jobs_v1_beta3_JobsV1Beta3Client_update_job
dataflow_client = dataflow.JobsV1Beta3Client()
request = dataflow.UpdateJobRequest(
project_id=project,
location=location,
job_id=job_id,
job=Job(requested_state=JobState.JOB_STATE_CANCELLED),
)
response = dataflow_client.update_job(request=request)
print(response)
@retry.Retry(retry.if_exception_type(AssertionError), timeout=TIMEOUT_SEC)
def wait_until(condition: Callable[[], bool], message: str) -> None:
assert condition(), message
def run_cmd(*cmd: str) -> subprocess.CompletedProcess:
try:
print(f"run_cmd: {cmd}")
start = datetime.now()
p = subprocess.run(
cmd,
check=True,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
)
print(p.stderr.decode("utf-8").strip())
print(p.stdout.decode("utf-8").strip())
elapsed = (datetime.now() - start).seconds
minutes = int(elapsed / 60)
seconds = elapsed - minutes * 60
print(f"-- run_cmd `{cmd[0]}` finished in {minutes}m {seconds}s")
return p
except subprocess.CalledProcessError as e:
# Include the error message from the failed command.
print(e.stderr.decode("utf-8"))
print(e.stdout.decode("utf-8"))
raise RuntimeError(f"{e}\n\n{e.stderr.decode('utf-8')}") from e
# ---- FOR BACKWARDS COMPATIBILITY ONLY, prefer fixture-style ---- #
# Default options.
UUID = uuid.uuid4().hex[0:6]
PROJECT = os.environ["GOOGLE_CLOUD_PROJECT"]
REGION = "us-central1"
POLL_INTERVAL_SEC = 60 # 1 minute in seconds
LIST_PAGE_SIZE = 100
TIMEOUT_SEC = 30 * 60 # 30 minutes in seconds
HYPHEN_NAME_RE = re.compile(r"[^\w\d-]+")
UNDERSCORE_NAME_RE = re.compile(r"[^\w\d_]+")
PYTHON_VERSION = "".join(platform.python_version_tuple()[0:2])
@dataclass
class Utils:
uuid: str = UUID
project: str = PROJECT
region: str = REGION
@staticmethod
def hyphen_name(name: str) -> str:
unique_name = f"{name}-py{PYTHON_VERSION}-{UUID}"
return HYPHEN_NAME_RE.sub("-", unique_name)
@staticmethod
def underscore_name(name: str) -> str:
return UNDERSCORE_NAME_RE.sub("_", Utils.hyphen_name(name))
@staticmethod
def wait_until(
is_done: Callable[[], bool],
timeout_sec: int = TIMEOUT_SEC,
poll_interval_sec: int = POLL_INTERVAL_SEC,
) -> bool:
for _ in range(0, timeout_sec, poll_interval_sec):
if is_done():
return True
time.sleep(poll_interval_sec)
return False
@staticmethod
def storage_bucket(name: str) -> str:
if bucket_name := os.environ.get("GOOGLE_CLOUD_BUCKET"):
logging.warning(f"Using bucket from GOOGLE_CLOUD_BUCKET: {bucket_name}")
yield bucket_name
return # don't delete
from google.cloud import storage
storage_client = storage.Client()
bucket = storage_client.create_bucket(Utils.hyphen_name(name))
logging.info(f"Created storage_bucket: {bucket.name}")
yield bucket.name
# Print all the objects in the bucket before deleting for debugging.
logging.info(f"Deleting bucket {bucket.name} with the following contents:")
total_files = 0
total_size = 0
for blob in bucket.list_blobs():
logging.info(f" - {blob.name} ({blob.size} bytes)")
total_files += 1
total_size += blob.size
logging.info(f"Total {total_files} files ({total_size} bytes)")
bucket.delete(force=True)
logging.info(f"Deleted storage_bucket: {bucket.name}")
@staticmethod
def bigquery_dataset(
name: str,
project: str = PROJECT,
location: str = REGION,
) -> str:
from google.api_core.exceptions import NotFound
from google.cloud import bigquery
bigquery_client = bigquery.Client()
dataset_name = Utils.underscore_name(name)
dataset = bigquery.Dataset(f"{project}.{dataset_name}")
dataset.location = location
result = bigquery_client.create_dataset(dataset)
logging.info(f"Created bigquery_dataset: {result.full_dataset_id}")
yield result.dataset_id
try:
bigquery_client.delete_dataset(
f"{project}.{dataset_name}", delete_contents=True
)
logging.info(f"Deleted bigquery_dataset: {result.full_dataset_id}")
except NotFound:
logging.info(f"{result.full_dataset_id} already deleted.")
@staticmethod
def bigquery_table(
dataset_name: str, table_name: str, project: str = PROJECT, **kwargs
) -> str:
from google.cloud import bigquery
bigquery_client = bigquery.Client()
table = bigquery.Table(f"{project}.{dataset_name}.{table_name}", **kwargs)
result = bigquery_client.create_table(table)
logging.info(f"Created bigquery_table: {result.full_table_id}")
yield result.table_id
# This table will be deleted when the dataset is deleted.
@staticmethod
def bigquery_table_exists(
dataset_name: str, table_name: str, project: str = PROJECT
) -> bool:
from google.cloud import bigquery
from google.cloud.exceptions import NotFound
bigquery_client = bigquery.Client()
try:
bigquery_client.get_table(f"{project}.{dataset_name}.{table_name}")
return True
except NotFound:
return False
@staticmethod
def bigquery_query(query: str, region: str = REGION) -> Iterator[dict[str, Any]]:
from google.cloud import bigquery
bigquery_client = bigquery.Client()
logging.info(f"Bigquery query: {query}")
for row in bigquery_client.query(query, location=region):
yield dict(row)
@staticmethod
def pubsub_topic(name: str, project: str = PROJECT) -> str:
from google.cloud import pubsub
publisher_client = pubsub.PublisherClient()
topic_path = publisher_client.topic_path(project, Utils.hyphen_name(name))
topic = publisher_client.create_topic(request={"name": topic_path})
logging.info(f"Created pubsub_topic: {topic.name}")
yield topic.name
# Due to the pinned library dependencies in apache-beam, client
# library throws an error upon deletion.
# We use gcloud for a workaround. See also:
# https://github.com/GoogleCloudPlatform/python-docs-samples/issues/4492
cmd = ["gcloud", "pubsub", "--project", project, "topics", "delete", topic.name]
logging.info(f"{cmd}")
subprocess.check_call(cmd)
logging.info(f"Deleted pubsub_topic: {topic.name}")
@staticmethod
def pubsub_subscription(
topic_path: str,
name: str,
project: str = PROJECT,
) -> str:
from google.cloud import pubsub
subscriber = pubsub.SubscriberClient()
subscription_path = subscriber.subscription_path(
project, Utils.hyphen_name(name)
)
subscription = subscriber.create_subscription(
request={"name": subscription_path, "topic": topic_path}
)
logging.info(f"Created pubsub_subscription: {subscription.name}")
yield subscription.name
# Due to the pinned library dependencies in apache-beam, client
# library throws an error upon deletion.
# We use gcloud for a workaround. See also:
# https://github.com/GoogleCloudPlatform/python-docs-samples/issues/4492
cmd = [
"gcloud",
"pubsub",
"--project",
project,
"subscriptions",
"delete",
subscription.name,
]
logging.info(f"{cmd}")
subprocess.check_call(cmd)
logging.info(f"Deleted pubsub_subscription: {subscription.name}")
@staticmethod
def pubsub_publisher(
topic_path: str,
new_msg: Callable[[int], str] = lambda i: json.dumps(
{"id": i, "content": f"message {i}"}
),
sleep_sec: int = 1,
) -> bool:
from google.cloud import pubsub
def _infinite_publish_job() -> None:
publisher_client = pubsub.PublisherClient()
for i in itertools.count():
msg = new_msg(i)
publisher_client.publish(topic_path, msg.encode("utf-8")).result()
time.sleep(sleep_sec)
# Start a subprocess in the background to do the publishing.
logging.info(f"Starting publisher on {topic_path}")
p = mp.Process(target=_infinite_publish_job)
# We set the subprocess as a daemon so the main process doesn't wait for
# the subprocess to finish. Since this is an infinite loop, it will
# never finish, so it would cause the whole test to hang.
# Typically, `terminate` should stop the subprocess during the fixture
# cleanup phase, but we've had cases where the tests hang, most likely
# due to concurrency issues with pytest running in parallel.
# https://docs.python.org/3/library/multiprocessing.html#multiprocessing.Process.daemon
p.daemon = True
p.start()
yield p.is_alive()
# For cleanup, terminate the background process.
logging.info("Stopping publisher")
p.terminate()
@staticmethod
def cloud_build_submit(
image_name: str | None = None,
config: str | None = None,
source: str = ".",
substitutions: dict[str, str] | None = None,
project: str = PROJECT,
) -> None:
"""Sends a Cloud Build job, if an image_name is provided it will be deleted at teardown."""
cmd = ["gcloud", "auth", "configure-docker"]
logging.info(f"{cmd}")
subprocess.check_call(cmd)
gcr_project = project.replace(':', '/')
if substitutions:
cmd_substitutions = [
f"--substitutions={','.join([k + '=' + v for k, v in substitutions.items()])}"
]
else:
cmd_substitutions = []
if config:
try:
with open(config) as f:
cmd = [
"gcloud",
"builds",
"submit",
f"--project={project}",
f"--config={config}",
*cmd_substitutions,
source,
]
logging.info(f"{cmd}")
subprocess.check_call(cmd)
logging.info(f"Cloud build finished successfully: {config}")
yield f.read()
except Exception as e:
logging.exception(e)
logging.warning(f"Current directory: {os.getcwd()}")
yield config
elif image_name:
cmd = [
"gcloud",
"builds",
"submit",
f"--project={project}",
f"--tag=gcr.io/{gcr_project}/{image_name}:{UUID}",
*cmd_substitutions,
source,
]
logging.info(f"{cmd}")
subprocess.check_call(cmd)
logging.info(
f"Created image: gcr.io/{gcr_project}/{image_name}:{UUID}")
yield f"{image_name}:{UUID}"
else:
raise ValueError("must specify either `config` or `image_name`")
if image_name:
cmd = [
"gcloud",
"container",
"images",
"delete",
f"gcr.io/{gcr_project}/{image_name}:{UUID}",
f"--project={project}",
"--force-delete-tags",
"--quiet",
]
logging.info(f"{cmd}")
subprocess.check_call(cmd)
logging.info(
f"Deleted image: gcr.io/{gcr_project}/{image_name}:{UUID}")
@staticmethod
def dataflow_job_url(
job_id: str,
project: str = PROJECT,
region: str = REGION,
) -> str:
return f"https://console.cloud.google.com/dataflow/jobs/{region}/{job_id}?project={project}"
@staticmethod
def dataflow_jobs_list(
project: str = PROJECT, page_size: int = 30
) -> Iterator[dict]:
from googleapiclient.discovery import build
dataflow = build("dataflow", "v1b3")
response = {"nextPageToken": None}
while "nextPageToken" in response:
# For more info see:
# https://cloud.google.com/dataflow/docs/reference/rest/v1b3/projects.jobs/list
request = (
dataflow.projects()
.jobs()
.list(
projectId=project,
pageToken=response["nextPageToken"],
pageSize=page_size,
)
)
response = request.execute()
for job in response["jobs"]:
yield job
@staticmethod
def dataflow_job_id(
job_name: str, project: str = PROJECT, list_page_size: int = LIST_PAGE_SIZE
) -> str:
for job in Utils.dataflow_jobs_list(project, list_page_size):
if job["name"] == job_name:
logging.info(f"Found Dataflow job: {job}")
return job["id"]
raise ValueError(f"Dataflow job not found: job_name={job_name}")
@staticmethod
def dataflow_jobs_get(job_id: str, project: str = PROJECT) -> dict[str, Any]:
from googleapiclient.discovery import build
dataflow = build("dataflow", "v1b3")
# For more info see:
# https://cloud.google.com/dataflow/docs/reference/rest/v1b3/projects.jobs/get
request = (
dataflow.projects()
.jobs()
.get(
projectId=project,
jobId=job_id,
view="JOB_VIEW_SUMMARY",
)
)
# If the job is not found, this throws an HttpError exception.
return request.execute()
@staticmethod
def dataflow_jobs_wait(
job_id: str,
project: str = PROJECT,
region: str = REGION,
target_states: set[str] = {"JOB_STATE_DONE"},
timeout_sec: int = TIMEOUT_SEC,
poll_interval_sec: int = POLL_INTERVAL_SEC,
) -> str | None:
"""For a list of all the valid states:
https://cloud.google.com/dataflow/docs/reference/rest/v1b3/projects.jobs#Job.JobState
"""
finish_states = {
"JOB_STATE_DONE",
"JOB_STATE_FAILED",
"JOB_STATE_CANCELLED",
"JOB_STATE_DRAINED",
}
logging.info(
f"Waiting for Dataflow job {job_id} until {target_states}\n"
+ Utils.dataflow_job_url(job_id, project, region)
)
def job_is_done() -> bool:
try:
job = Utils.dataflow_jobs_get(job_id, project)
state = job["currentState"]
if state in target_states:
logging.info(f"Dataflow job found with state {state}")
return True
elif state in finish_states:
raise RuntimeError(
f"Dataflow job finished with state {state}, but we were expecting {target_states}\n"
+ Utils.dataflow_job_url(job_id, project, region)
)
return False
except Exception as e:
logging.exception(e)
return False
Utils.wait_until(job_is_done, timeout_sec, poll_interval_sec)
assert job_is_done(), (
f"Dataflow job is not done after {timeout_sec} seconds\n"
+ Utils.dataflow_job_url(job_id, project, region)
)
@staticmethod
def dataflow_jobs_cancel(
job_id: str,
drain: bool = False,
project: str = PROJECT,
region: str = REGION,
) -> None:
logging.info(f"Cancelling Dataflow job ID: {job_id}")
# We get an error using the googleapiclient.discovery APIs, probably
# due to incompatible dependencies with apache-beam.
# We use gcloud instead to cancel the job.
if drain:
# https://cloud.google.com/sdk/gcloud/reference/dataflow/jobs/drain
cmd = [
"gcloud",
f"--project={project}",
"dataflow",
"jobs",
"drain",
job_id,
f"--region={region}",
]
logging.info(f"{cmd}")
subprocess.check_call(cmd)
# After draining the job, we must wait until the job has actually finished.
Utils.dataflow_jobs_wait(
job_id,
target_states={
"JOB_STATE_DONE",
"JOB_STATE_FAILED",
"JOB_STATE_CANCELLED",
"JOB_STATE_DRAINED",
},
project=project,
region=region,
)
else:
# https://cloud.google.com/sdk/gcloud/reference/dataflow/jobs/cancel
cmd = [
"gcloud",
f"--project={project}",
"dataflow",
"jobs",
"cancel",
job_id,
f"--region={region}",
]
logging.info(f"{cmd}")
subprocess.check_call(cmd)
logging.info(f"Cancelled Dataflow job: {job_id}")
@staticmethod
def dataflow_flex_template_build(
bucket_name: str,
image_name: str,
metadata_file: str | None = "metadata.json",
template_file: str = "template.json",
project: str = PROJECT,
) -> str:
# https://cloud.google.com/sdk/gcloud/reference/dataflow/flex-template/build
template_gcs_path = f"gs://{bucket_name}/{template_file}"
gcr_project = project.replace(':', '/')
cmd = [
"gcloud",
"dataflow",
"flex-template",
"build",
template_gcs_path,
f"--project={project}",
f"--image=gcr.io/{gcr_project}/{image_name}",
"--sdk-language=PYTHON"
]
if metadata_file:
cmd.append(f"--metadata-file={metadata_file}")
logging.info(f"{cmd}")
subprocess.check_call(cmd)
logging.info(f"dataflow_flex_template_build: {template_gcs_path}")
yield template_gcs_path
# The template file gets deleted when we delete the bucket.
@staticmethod
def dataflow_flex_template_run(
job_name: str,
template_path: str,
bucket_name: str,
parameters: dict[str, str] = {},
project: str = PROJECT,
region: str = REGION,
additional_experiments: dict[str,str] = {},
) -> str:
import yaml
# https://cloud.google.com/sdk/gcloud/reference/dataflow/flex-template/run
unique_job_name = Utils.hyphen_name(job_name)
logging.info(f"dataflow_job_name: {unique_job_name}")
cmd = [
"gcloud",
"dataflow",
"flex-template",
"run",
unique_job_name,
f"--template-file-gcs-location={template_path}",
f"--project={project}",
f"--region={region}",
f"--staging-location=gs://{bucket_name}/staging",
] + [
f"--parameters={name}={value}"
for name, value in {
**parameters,
}.items()
] + [
f"--additional-experiments={name}={value}"
for name, value in {
**additional_experiments,
}.items()
]
logging.info(f"{cmd}")
stdout = subprocess.check_output(cmd).decode("utf-8")
logging.info(f"Launched Dataflow Flex Template job: {unique_job_name}")
job_id = yaml.safe_load(stdout)["job"]["id"]
logging.info(f"Dataflow Flex Template job id: {job_id}")
logging.info(f">> {Utils.dataflow_job_url(job_id, project, region)}")
yield job_id
Utils.dataflow_jobs_cancel(job_id, region=region)
@staticmethod
def dataflow_extensible_template_run(
job_name: str,
template_path: str,
bucket_name: str,
parameters: dict[str, str] = {},
project: str = PROJECT,
region: str = REGION,
) -> str:
import yaml
unique_job_name = Utils.hyphen_name(job_name)
logging.info(f"dataflow_job_name: {unique_job_name}")
cmd = [
"gcloud",
"dataflow",
"jobs",
"run",
unique_job_name,
f"--gcs-location={template_path}",
f"--project={project}",
f"--region={region}",
] + [
f"--parameters={name}={value}"
for name, value in {
**parameters,
}.items()
]
logging.info(cmd)
stdout = subprocess.check_output(cmd).decode("utf-8")
logging.info(f"Launched Dataflow Template job: {unique_job_name}")
job_id = yaml.safe_load(stdout)["id"]
logging.info(f"Dataflow Template job id: {job_id}")
logging.info(f">> {Utils.dataflow_job_url(job_id, project, region)}")
yield job_id
Utils.dataflow_jobs_cancel(job_id)
@pytest.fixture(scope="session")
def utils() -> Utils:
logging.getLogger().setLevel(logging.INFO)
logging.info(f"Test unique identifier: {UUID}")
subprocess.check_call(["gcloud", "version"])
return Utils()