This page describes how to manually install and run h2oGPT on Linux. Note that the following instructions are for Ubuntu x86_64. (The steps in the following subsection can be adapted to other Linux distributions by substituting apt-get
with the appropriate package management command.)
Ensure cuda toolkit is installed, e.g. for CUDA 12.1 on Ubuntu 22:
wget https://developer.download.nvidia.com/compute/cuda/12.1.1/local_installers/cuda_12.1.1_530.30.02_linux.run
sudo sh cuda_12.1.1_530.30.02_linux.run
One only needs to install the toolkit, and one does not have to overwrite the symlink. Then run:
curl -fsSL https://h2o-release.s3.amazonaws.com/h2ogpt/linux_install_full.sh | bash
and enter the sudo password when required. Once install done, do:
conda activate h2ogpt
To avoid periodically entering the sudo password (default 5 minute timeout), then extend the sudo timeout by running:
sudo visudo
and adding:
Defaults timestamp_timeout=60
after the Defaults env_reset
line. Then run:
sudo bash
exit
So allow your user session to run sudo for 60 minutes. Then the script will not ask for sudo password during its run.
-
Set up a Python 3.10 environment. We recommend using Miniconda.
Download Miniconda for Linux and install:
wget https://repo.anaconda.com/miniconda/Miniconda3-py310_23.1.0-1-Linux-x86_64.sh bash ./Miniconda3-py310_23.1.0-1-Linux-x86_64.sh -b -p $HOME/miniconda3 # Manually adding Conda init to .bashrc echo '### Conda init ###' >> $HOME/.bashrc echo 'source $HOME/miniconda3/etc/profile.d/conda.sh' >> $HOME/.bashrc echo 'conda activate' >> $HOME/.bashrc source $HOME/.bashrc # install h2ogpt env # Run below if have existing h2ogpt env # conda remove -n h2ogpt --all -y conda update conda -y conda create -n h2ogpt -y conda activate h2ogpt conda install python=3.10 -c conda-forge -y
You should see
(h2ogpt)
in the shell prompt. If do not want conda in your~/.bashrc
, then add to different shell script tosource
before starting h2oGPT. -
Check your python version with the following command:
python --version python -c "import os, sys ; print('hello world')"
The return should say 3.10.xx, and print
hello world
. -
Clone h2oGPT:
git clone https://github.com/h2oai/h2ogpt.git cd h2ogpt
On some systems,
pip
still refers back to the system one, then one can usepython -m pip
orpip3
instead ofpip
or trypython3
instead ofpython
. -
For GPU: Install CUDA ToolKit with ability to compile using nvcc for some packages like llama-cpp-python, AutoGPTQ, exllama, flash attention, TTS use of deepspeed, by going to CUDA Toolkit. E.g. CUDA 12.1 Toolkit. In order to avoid removing the original CUDA toolkit/driver you have, on NVIDIA's website, use the
runfile (local)
installer, and choose to not install driver or overwrite/usr/local/cuda
link and just install the toolkit, and rely upon theCUDA_HOME
env to point to the desired CUDA version. E.g. for CUDA 12.1 do:
wget https://developer.download.nvidia.com/compute/cuda/12.1.1/local_installers/cuda_12.1.1_530.30.02_linux.run
sudo sh cuda_12.1.1_530.30.02_linux.run
-
Then do:
echo 'export CUDA_HOME=/usr/local/cuda-12.1' >> $HOME/.bashrc echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$CUDA_HOME/lib64:$CUDA_HOME/extras/CUPTI/lib64' >> $HOME/.bashrc echo 'export PATH=$PATH:$CUDA_HOME/bin' >> $HOME/.bashrc
If you do not want these in your
~/.bashrc
, then add to different shell script tosource
before starting h2oGPT (e.g. for TTS's use of deepspeed to work). -
Prepare to install dependencies for CUDA 12.1:
export PIP_EXTRA_INDEX_URL="https://download.pytorch.org/whl/cu121 https://huggingface.github.io/autogptq-index/whl/cu121"
or for CUDA 11.8:
export PIP_EXTRA_INDEX_URL="https://download.pytorch.org/whl/cu118 https://huggingface.github.io/autogptq-index/whl/cu118"
For some packages, this requires changing cu118 in reqs_optional/requirements*.txt if built for cu118 specifically. Choose cu121+ for A100/H100+. Or for CPU set
export PIP_EXTRA_INDEX_URL="https://download.pytorch.org/whl/cpu"
-
Choose llama_cpp_python ARGS for your system according to llama_cpp_python backend documentation, e.g. for CUDA:
export LLAMA_CUBLAS=1 export CMAKE_ARGS="-DLLAMA_CUBLAS=on -DCMAKE_CUDA_ARCHITECTURES=all" export FORCE_CMAKE=1
Note for some reason things will fail with llama_cpp_python if don't add all cuda arches, and building with all those arches does take some time.
-
Run (
bash docs/linux_install.sh
)[linux_install.sh] for full normal document Q/A installation. To allow all (GPL too) packages, run:GPLOK=1 bash docs/linux_install.sh
One can pick and choose different optional things to install instead by commenting them out in the shell script, or edit the script if any issues. See script for notes about installation.
For information on how to run h2oGPT offline, see Offline.
See the FAQ for many ways to run models. The following are some other examples.
Note that models are stored in /home/$USER/.cache/
for chroma, huggingface, selenium, torch, weaviate, etc. directories.
-
Check that can see CUDA from Torch:
import torch print(torch.cuda.is_available())
should print True.
-
Place all documents in
user_path
or upload in UI (Help with UI).UI using GPU with at least 24GB with streaming:
python generate.py --base_model=h2oai/h2ogpt-4096-llama2-13b-chat --load_8bit=True --score_model=None --langchain_mode='UserData' --user_path=user_path
Same with a smaller model without quantization:
python generate.py --base_model=h2oai/h2ogpt-4096-llama2-7b-chat --score_model=None --langchain_mode='UserData' --user_path=user_path
UI using LLaMa.cpp LLaMa2 model:
python generate.py --base_model='llama' --prompt_type=llama2 --score_model=None --langchain_mode='UserData' --user_path=user_path --model_path_llama=https://huggingface.co/TheBloke/Llama-2-7b-Chat-GGUF/resolve/main/llama-2-7b-chat.Q6_K.gguf?download=true --max_seq_len=4096
which works on CPU or GPU (assuming llama cpp python package compiled against CUDA or Metal).
If using OpenAI for the LLM is ok, but you want documents to be parsed and embedded locally, then do:
OPENAI_API_KEY=<key> python generate.py --inference_server=openai_chat --base_model=gpt-3.5-turbo --score_model=None
where
<key>
should be replaced by your OpenAI key that probably starts withsk-
. OpenAI is not recommended for private document question-answer, but it can be a good reference for testing purposes or when privacy is not required.
Perhaps you want better image caption performance and focus local GPU on that, then do:OPENAI_API_KEY=<key> python generate.py --inference_server=openai_chat --base_model=gpt-3.5-turbo --score_model=None --captions_model=Salesforce/blip2-flan-t5-xl
For Azure OpenAI:
OPENAI_API_KEY=<key> python generate.py --inference_server="openai_azure_chat:<deployment_name>:<base_url>:<api_version>" --base_model=gpt-3.5-turbo --h2ocolors=False --langchain_mode=UserData
where the entry
<deployment_name>
is required for Azure, others are optional and can be filled with stringNone
or have empty input between:
. Azure OpenAI is a bit safer for private access to Azure-based docs.Add
--share=True
to make gradio server visible via sharable URL.If you see an error about protobuf, try:
pip install protobuf==3.20.0
See CPU and GPU for some other general aspects about using h2oGPT on CPU or GPU, such as which models to try.
-
A Google Colab version of a 3B GPU model is at:
A local copy of that GPU Google Colab is h2oGPT_GPU.ipynb.
-
A Google Colab version of a 7B LLaMa CPU model is at:
A local copy of that CPU Google Colab is h2oGPT_CPU.ipynb.
- If your Ubuntu etc. is very out of date (E.g. Ubuntu 18), you can run the below, but it might lead to system issues. If you already have Ubuntu 20, 22, do not run these.
apt-get clean all
apt-get update
apt-get -y full-upgrade
apt-get -y dist-upgrade
apt-get -y autoremove
apt-get clean all
If see:
File "/home/jon/h2ogpt/src/gen.py", line 2289, in get_config
model = AutoModel.from_config(
File "/home/jon/miniconda3/envs/h2ogpt/lib/python3.10/site-packages/transformers/models/auto/auto_factory.py", line 434, in from_config
model_class = _get_model_class(config, cls._model_mapping)
File "/home/jon/miniconda3/envs/h2ogpt/lib/python3.10/site-packages/transformers/models/auto/auto_factory.py", line 381, in _get_model_class
supported_models = model_mapping[type(config)]
File "/home/jon/miniconda3/envs/h2ogpt/lib/python3.10/site-packages/transformers/models/auto/auto_factory.py", line 732, in __getitem__
return self._load_attr_from_module(model_type, model_name)
File "/home/jon/miniconda3/envs/h2ogpt/lib/python3.10/site-packages/transformers/models/auto/auto_factory.py", line 746, in _load_attr_from_module
return getattribute_from_module(self._modules[module_name], attr)
File "/home/jon/miniconda3/envs/h2ogpt/lib/python3.10/site-packages/transformers/models/auto/auto_factory.py", line 690, in getattribute_from_module
if hasattr(module, attr):
File "/home/jon/miniconda3/envs/h2ogpt/lib/python3.10/site-packages/transformers/utils/import_utils.py", line 1380, in __getattr__
module = self._get_module(self._class_to_module[name])
File "/home/jon/miniconda3/envs/h2ogpt/lib/python3.10/site-packages/transformers/utils/import_utils.py", line 1392, in _get_module
raise RuntimeError(
RuntimeError: Failed to import transformers.models.mistral.modeling_mistral because of the following error (look up to see its traceback):
/home/jon/miniconda3/envs/h2ogpt/lib/python3.10/site-packages/flash_attn_2_cuda.cpython-310-x86_64-linux-gnu.so: undefined symbol: _ZN2at4_ops5zeros4callEN3c108ArrayRefINS2_6SymIntEEENS2_8optionalINS2_10ScalarTypeEEENS6_INS2_6LayoutEEENS6_INS2_6DeviceEEENS6_IbEE
Ensure your CUDA_HOME
env is set to the same as you installed h2oGPT with, e.g.
export CUDA_HOME=/usr/local/cuda-12.1
Then run in the `h2ogpt` conda env:
```bash
# https://github.com/h2oai/h2ogpt/issues/1483
pip uninstall flash_attn autoawq autoawq-kernels -y && pip install flash_attn autoawq autoawq-kernels --no-cache-dir