forked from deepchem/deepchem
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhopv_graph_conv.py
47 lines (37 loc) · 1.17 KB
/
hopv_graph_conv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
"""
Script that trains graph-conv models on HOPV dataset.
"""
from __future__ import print_function
from __future__ import division
from __future__ import unicode_literals
import numpy as np
from deepchem.models import GraphConvModel
np.random.seed(123)
import tensorflow as tf
tf.random.set_seed(123)
import deepchem as dc
from deepchem.molnet import load_hopv
# Load HOPV dataset
hopv_tasks, hopv_datasets, transformers = load_hopv(featurizer='GraphConv')
train_dataset, valid_dataset, test_dataset = hopv_datasets
# Fit models
metric = [
dc.metrics.Metric(dc.metrics.pearson_r2_score, np.mean, mode="regression"),
dc.metrics.Metric(
dc.metrics.mean_absolute_error, np.mean, mode="regression")
]
# Number of features on conv-mols
n_feat = 75
# Batch size of models
batch_size = 50
model = GraphConvModel(
len(hopv_tasks), batch_size=batch_size, mode='regression')
# Fit trained model
model.fit(train_dataset, nb_epoch=25)
print("Evaluating model")
train_scores = model.evaluate(train_dataset, metric, transformers)
valid_scores = model.evaluate(valid_dataset, metric, transformers)
print("Train scores")
print(train_scores)
print("Validation scores")
print(valid_scores)