Skip to content

Latest commit

 

History

History
123 lines (92 loc) · 5.24 KB

README.md

File metadata and controls

123 lines (92 loc) · 5.24 KB

CODE SIZE CONTRIBUTORS LAST COMMIT

Language version
Python LTP
Rust LTP

LTP 4

LTP(Language Technology Platform) 提供了一系列中文自然语言处理工具,用户可以使用这些工具对于中文文本进行分词、词性标注、句法分析等等工作。

If you use any source codes included in this toolkit in your work, please kindly cite the following paper. The bibtex are listed below:

@article{che2020n,
  title={N-LTP: A Open-source Neural Chinese Language Technology Platform with Pretrained Models},
  author={Che, Wanxiang and Feng, Yunlong and Qin, Libo and Liu, Ting},
  journal={arXiv preprint arXiv:2009.11616},
  year={2020}
}

参考书: 由哈工大社会计算与信息检索研究中心(HIT-SCIR)的多位学者共同编著的《自然语言处理:基于预训练模型的方法 》(作者:车万翔、郭江、崔一鸣;主审:刘挺)一书现已正式出版,该书重点介绍了新的基于预训练模型的自然语言处理技术,包括基础知识、预训练词向量和预训练模型三大部分,可供广大LTP用户学习参考。

快速使用

from ltp import LTP

ltp = LTP()  # 默认加载 Small 模型
# ltp = LTP(pretrained_model_name_or_path="LTP/small")
# 另外也可以接受一些已注册可自动下载的模型名(https://huggingface.co/LTP):
# 使用字典结果
output = ltp.pipeline(["他叫汤姆去拿外衣。"], tasks=["cws", "pos", "ner", "srl", "dep", "sdp"])
print(output.cws)
print(output.pos)
print(output.sdp)

# 传统算法,比较快,但是精度略低
ltp = LTP("LTP/legacy")
cws, pos, ner = ltp.pipeline(
    ["他叫汤姆去拿外衣。"], tasks=["cws", "pos", "ner"]
).to_tuple()
print(cws, pos, ner)

详细说明

use std::fs::File;
use apache_avro::Codec;
use itertools::multizip;
use ltp::{CWSModel, POSModel, NERModel, ModelSerde, Format};

fn main() -> Result<(), Box<dyn std::error::Error>> {
    let file = File::open("data/legacy-models/cws_model.bin")?;
    let cws: CWSModel = ModelSerde::load(file, Format::AVRO(Codec::Deflate))?;
    let file = File::open("data/legacy-models/pos_model.bin")?;
    let pos: POSModel = ModelSerde::load(file, Format::AVRO(Codec::Deflate))?;
    let file = File::open("data/legacy-models/ner_model.bin")?;
    let ner: NERModel = ModelSerde::load(file, Format::AVRO(Codec::Deflate))?;

    let words = cws.predict("他叫汤姆去拿外衣。");
    let pos = pos.predict(&words);
    let ner = ner.predict((&words, &pos));

    for (w, p, n) in multizip((words, pos, ner)) {
        println!("{}/{}/{}", w, p, n);
    }

    Ok(())
}

指标

模型 分词 词性 命名实体 语义角色 依存句法 语义依存 速度(句/S)
LTP 4.0 (Base) 98.7 98.5 95.4 80.6 89.5 75.2 39.12
LTP 4.0 (Base1) 99.22 98.73 96.39 79.28 89.57 76.57 --.--
LTP 4.0 (Base2) 99.18 98.69 95.97 79.49 90.19 76.62 --.--
LTP 4.0 (Small) 98.4 98.2 94.3 78.4 88.3 74.7 43.13
LTP 4.0 (Tiny) 96.8 97.1 91.6 70.9 83.8 70.1 53.22
模型 分词 词性 命名实体 速度(KB/s)
LTP 4.0 (Legacy) 97.93 98.41 94.28 1318.84

模型下载地址

构建 Wheel 包

make bdist

其他语言绑定

目前仅支持传统学习算法

作者信息

开源协议

  1. 语言技术平台面向国内外大学、中科院各研究所以及个人研究者免费开放源代码,但如上述机构和个人将该平台用于商业目的(如企业合作项目等)则需要付费。
  2. 除上述机构以外的企事业单位,如申请使用该平台,需付费。
  3. 凡涉及付费问题,请发邮件到 [email protected] 洽商。
  4. 如果您在 LTP 基础上发表论文或取得科研成果,请您在发表论文和申报成果时声明“使用了哈工大社会计算与信息检索研究中心研制的语言技术平台(LTP)”. 同时,发信给[email protected],说明发表论文或申报成果的题目、出处等。