-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_cm.py
786 lines (661 loc) · 38 KB
/
train_cm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
import os
import numpy as np, argparse, time, pickle, random
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from torch.utils.data.sampler import SubsetRandomSampler, WeightedRandomSampler
from dataloader import IEMOCAPDataset, MELDDataset
from model_cm import MaskedNLLLoss, LSTMModel, GRUModel, Model, MaskedMSELoss, FocalLoss, Model_Inter, Model_Intra
from sklearn.metrics import f1_score, confusion_matrix, accuracy_score, classification_report, precision_recall_fscore_support
import pandas as pd
import pickle as pk
import datetime
import ipdb
from clloss import CKSCL_context, CKSCL_tav
from tqdm import tqdm
CKSCL_m = CKSCL_tav()
CKSCL_c = CKSCL_context()
def create_class_weight_SCL(label):
unique = list(set(label.cpu().detach().numpy().tolist()))
# one = sum(label)
labels_dict = {l:(label==l).sum().item() for l in unique}
# labels_dict = {0 : len(label) - one, 1: one}
total = sum(list(labels_dict.values()))
weights = []
for i in range(max(unique)+1):
if i not in unique:
weights.append(0)
else:
weights.append(total/labels_dict[i])
return weights
# seed = 1475 # We use seed = 1475 on IEMOCAP and seed = 67137 on MELD
def seed_everything(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
def _init_fn(worker_id):
np.random.seed(int(args.seed)+worker_id)
def get_train_valid_sampler(trainset, valid=0.1, dataset='IEMOCAP'):
size = len(trainset)
idx = list(range(size))
split = int(valid*size)
return SubsetRandomSampler(idx[split:]), SubsetRandomSampler(idx[:split])
def get_MELD_loaders(batch_size=32, valid=0.1, num_workers=0, pin_memory=False, epoch_ratio=-1):
trainset = MELDDataset('data/MELD_features_raw1.pkl', epoch_ratio=epoch_ratio)
train_sampler, valid_sampler = get_train_valid_sampler(trainset, valid, 'MELD')
train_loader = DataLoader(trainset,
batch_size=batch_size,
sampler=train_sampler,
collate_fn=trainset.collate_fn,
num_workers=num_workers,
pin_memory=pin_memory)
valid_loader = DataLoader(trainset,
batch_size=batch_size,
sampler=valid_sampler,
collate_fn=trainset.collate_fn,
num_workers=num_workers,
pin_memory=pin_memory)
testset = MELDDataset('data/MELD_features_raw1.pkl', train=False)
test_loader = DataLoader(testset,
batch_size=batch_size,
collate_fn=testset.collate_fn,
num_workers=num_workers,
pin_memory=pin_memory)
return train_loader, valid_loader, test_loader
def get_IEMOCAP_loaders(batch_size=32, valid=0.1, num_workers=0, pin_memory=False, epoch_ratio=-1):
trainset = IEMOCAPDataset(epoch_ratio=epoch_ratio)
train_sampler, valid_sampler = get_train_valid_sampler(trainset, valid)
train_loader = DataLoader(trainset,
batch_size=batch_size,
collate_fn=trainset.collate_fn,
num_workers=num_workers,
pin_memory=pin_memory, worker_init_fn=_init_fn)
valid_loader = DataLoader(trainset,
batch_size=batch_size,
sampler=valid_sampler,
collate_fn=trainset.collate_fn,
num_workers=num_workers,
pin_memory=pin_memory)
testset = IEMOCAPDataset(train=False)
test_loader = DataLoader(testset,
batch_size=batch_size,
collate_fn=testset.collate_fn,
num_workers=num_workers,
pin_memory=pin_memory, worker_init_fn=_init_fn)
return train_loader, valid_loader, test_loader
def train_or_eval_model(model, loss_function, dataloader, epoch, optimizer=None, train=False):
"""
"""
losses, preds, labels, masks = [], [], [], []
alphas, alphas_f, alphas_b, vids = [], [], [], []
max_sequence_len = []
assert not train or optimizer!=None
if train:
model.train()
else:
model.eval()
seed_everything(args.seed)
for data in dataloader:
if train:
optimizer.zero_grad()
textf, visuf, acouf, qmask, umask, label = [d.cuda() for d in data[:-1]] if cuda else data[:-1]
max_sequence_len.append(textf.size(0))
log_prob, alpha, alpha_f, alpha_b, _ = model(textf, qmask, umask)
lp_ = log_prob.transpose(0,1).contiguous().view(-1, log_prob.size()[2])
labels_ = label.view(-1)
loss = loss_function(lp_, labels_, umask)
pred_ = torch.argmax(lp_,1)
preds.append(pred_.data.cpu().numpy())
labels.append(labels_.data.cpu().numpy())
masks.append(umask.view(-1).cpu().numpy())
losses.append(loss.item()*masks[-1].sum())
if train:
loss.backward()
if args.tensorboard:
for param in model.named_parameters():
writer.add_histogram(param[0], param[1].grad, epoch)
optimizer.step()
else:
alphas += alpha
alphas_f += alpha_f
alphas_b += alpha_b
vids += data[-1]
if preds!=[]:
preds = np.concatenate(preds)
labels = np.concatenate(labels)
masks = np.concatenate(masks)
else:
return float('nan'), float('nan'), [], [], [], float('nan'),[]
avg_loss = round(np.sum(losses)/np.sum(masks), 4)
avg_accuracy = round(accuracy_score(labels,preds, sample_weight=masks)*100, 2)
avg_fscore = round(f1_score(labels,preds, sample_weight=masks, average='weighted')*100, 2)
return avg_loss, avg_accuracy, labels, preds, masks, avg_fscore, [alphas, alphas_f, alphas_b, vids]
def train_or_eval_graph_model(model, model_mm, model_intra, model_inter, loss_function, dataloader, epoch, cuda, modals, optimizer=None, train=False, dataset='IEMOCAP'):
losses, preds, labels = [], [], []
scores, vids = [], []
ei, et, en, el = torch.empty(0).type(torch.LongTensor), torch.empty(0).type(torch.LongTensor), torch.empty(0), []
if cuda:
ei, et, en = ei.cuda(), et.cuda(), en.cuda()
assert not train or optimizer!=None
if train:
model.train()
else:
model.eval()
model_mm.load_state_dict(model.state_dict())
model_mm.eval()
model_intra.load_state_dict(model.state_dict())
model_intra.eval()
model_inter.load_state_dict(model.state_dict())
model_inter.eval()
seed_everything(args.seed)
for data in tqdm(dataloader):
if train:
optimizer.zero_grad()
textf1,textf2,textf3,textf4, visuf, acouf, qmask, umask, label = [d.cuda() for d in data[:-1]] if cuda else data[:-1]
if args.multi_modal:
if args.mm_fusion_mthd=='concat':
if modals == 'avl':
textf = torch.cat([acouf, visuf, textf1,textf2,textf3,textf4],dim=-1)
elif modals == 'av':
textf = torch.cat([acouf, visuf],dim=-1)
elif modals == 'vl':
textf = torch.cat([visuf, textf1,textf2,textf3,textf4],dim=-1)
elif modals == 'al':
textf = torch.cat([acouf, textf1,textf2,textf3,textf4],dim=-1)
else:
raise NotImplementedError
elif args.mm_fusion_mthd=='gated':
textf = textf
else:
if modals == 'a':
textf = acouf
elif modals == 'v':
textf = visuf
elif modals == 'l':
textf = textf
else:
raise NotImplementedError
# 1. Cross Entropy Loss
lengths = [(umask[j] == 1).nonzero(as_tuple=False).tolist()[-1][0] + 1 for j in range(len(umask))]
if args.multi_modal and args.mm_fusion_mthd=='gated':
log_prob, e_i, e_n, e_t, e_l, hidden = model(textf, qmask, umask, lengths, acouf, visuf)
elif args.multi_modal and args.mm_fusion_mthd=='concat_subsequently':
log_prob, e_i, e_n, e_t, e_l, hidden = model([textf1,textf2,textf3,textf4], qmask, umask, lengths, acouf, visuf, epoch)
elif args.multi_modal and args.mm_fusion_mthd=='concat_DHT':
log_prob, e_i, e_n, e_t, e_l, hidden = model([textf1,textf2,textf3,textf4], qmask, umask, lengths, acouf, visuf, epoch)
else:
log_prob, e_i, e_n, e_t, e_l, hidden = model(textf, qmask, umask, lengths)
label = torch.cat([label[j][:lengths[j]] for j in range(len(label))])
if args.contrastlearning or args.calibrate:
with torch.no_grad():
ft_scl = hidden
mask_textf1 = torch.mean(textf1, dim=0).repeat(textf1.shape[0], 1, 1)
mask_textf2 = torch.mean(textf2, dim=0).repeat(textf2.shape[0], 1, 1)
mask_textf3 = torch.mean(textf3, dim=0).repeat(textf3.shape[0], 1, 1)
mask_textf4 = torch.mean(textf4, dim=0).repeat(textf4.shape[0], 1, 1)
mask_acouf = torch.mean(acouf, dim=0).repeat(acouf.shape[0], 1, 1)
mask_visuf = torch.mean(visuf, dim=0).repeat(visuf.shape[0], 1, 1)
# mask multimodal data
log_prob2t, e_i, e_n, e_t, e_l, hiddent = model_mm([mask_textf1, mask_textf2, mask_textf3, mask_textf4], qmask, umask, lengths, acouf, visuf, epoch)
log_prob2a, e_i, e_n, e_t, e_l, hiddena = model_mm([textf1,textf2,textf3,textf4], qmask, umask, lengths, mask_acouf, visuf, epoch)
log_prob2v, e_i, e_n, e_t, e_l, hiddenv = model_mm([textf1,textf2,textf3,textf4], qmask, umask, lengths, acouf, mask_visuf, epoch)
# mask inter context and intra contex
log_prob2intra, e_i, e_n, e_t, e_l, hidden_intra = model_intra([textf1,textf2,textf3,textf4], qmask, umask, lengths, acouf, visuf, epoch)
log_prob2inter, e_i, e_n, e_t, e_l, hidden_inter = model_inter([textf1,textf2,textf3,textf4], qmask, umask, lengths, acouf, visuf, epoch)
labels_ = label
pred2t_ = torch.argmax(log_prob2t, 1) # batch*seq_len
pred2a_ = torch.argmax(log_prob2a, 1) # batch*seq_len
pred2v_ = torch.argmax(log_prob2v, 1) # batch*seq_len
pred2c_intra = torch.argmax(log_prob2intra, 1)
pred2c_inter = torch.argmax(log_prob2inter, 1)
# 2. rank loss, indicate cf
lp_ = log_prob
pred_ = torch.argmax(lp_,1)
rank_loss = 0
for i in range(len(log_prob)):
num = labels_[i]
if lp_[i][num] <= log_prob2t[i][num]:
rank_loss += (torch.sub(log_prob2t[i][num], lp_[i][num]))
if lp_[i][num] <= log_prob2a[i][num]:
rank_loss += (torch.sub(log_prob2a[i][num], lp_[i][num]))
if lp_[i][num] <= log_prob2v[i][num]:
rank_loss += (torch.sub(log_prob2v[i][num], lp_[i][num]))
rank_lossc = 0
for i in range(len(log_prob)):
num = labels_[i]
if lp_[i][num] <= log_prob2intra[i][num]:
rank_lossc += (torch.sub(log_prob2intra[i][num], lp_[i][num]))
if lp_[i][num] <= log_prob2inter[i][num]:
rank_lossc += (torch.sub(log_prob2inter[i][num], lp_[i][num]))
rank_loss = rank_loss + rank_lossc
# 2. for SCL label ##########################################################
# 0: confidence up
# 1: confidence drop
Mscl_pred_t = torch.zeros_like(pred_).cuda()
Mscl_pred_v = torch.zeros_like(pred_).cuda()
Mscl_pred_a = torch.zeros_like(pred_).cuda()
for index, x in enumerate(Mscl_pred_t):
if pred_[index] != labels_[index] and pred2t_[index] == labels_[index]:
Mscl_pred_t[index] = 0
if pred_[index] == labels_[index] and pred2t_[index] != labels_[index]:
Mscl_pred_t[index] = 1
if pred_[index] == labels_[index] and pred2t_[index] == labels_[index]:
if lp_[index][labels_[index]] <= log_prob2t[index][labels_[index]]:
Mscl_pred_t[index] = 0
if lp_[index][labels_[index]] > log_prob2t[index][labels_[index]]:
Mscl_pred_t[index] = 1
if pred_[index] != labels_[index] and pred2a_[index] == labels_[index]:
Mscl_pred_a[index] = 0
if pred_[index] == labels_[index] and pred2a_[index] != labels_[index]:
Mscl_pred_a[index] = 1
if pred_[index] == labels_[index] and pred2a_[index] == labels_[index]:
if lp_[index][labels_[index]] <= log_prob2a[index][labels_[index]]:
Mscl_pred_a[index] = 0
if lp_[index][labels_[index]] > log_prob2a[index][labels_[index]]:
Mscl_pred_a[index] = 1
if pred_[index] != labels_[index] and pred2v_[index] == labels_[index]:
Mscl_pred_v[index] = 0
if pred_[index] == labels_[index] and pred2v_[index] != labels_[index]:
Mscl_pred_v[index] = 1
if pred_[index] == labels_[index] and pred2v_[index] == labels_[index]:
if lp_[index][labels_[index]] <= log_prob2v[index][labels_[index]]:
Mscl_pred_v[index] = 0
if lp_[index][labels_[index]] > log_prob2v[index][labels_[index]]:
Mscl_pred_v[index] = 1
Cscl_pred_intra = torch.zeros_like(pred_).cuda()
Cscl_pred_inter = torch.zeros_like(pred_).cuda()
for index, x in enumerate(Cscl_pred_intra):
if pred_[index] != labels_[index] and pred2c_intra[index] == labels_[index]:
Cscl_pred_intra[index] = 0
if pred_[index] == labels_[index] and pred2c_intra[index] != labels_[index]:
Cscl_pred_intra[index] = 1
if pred_[index] == labels_[index] and pred2c_intra[index] == labels_[index]:
if lp_[index][labels_[index]] <= log_prob2intra[index][labels_[index]]:
Cscl_pred_intra[index] = 0
if lp_[index][labels_[index]] > log_prob2intra[index][labels_[index]]:
Cscl_pred_intra[index] = 1
if pred_[index] != labels_[index] and pred2c_inter[index] == labels_[index]:
Cscl_pred_inter[index] = 0
if pred_[index] == labels_[index] and pred2c_inter[index] != labels_[index]:
Cscl_pred_inter[index] = 1
if pred_[index] == labels_[index] and pred2c_inter[index] == labels_[index]:
if lp_[index][labels_[index]] <= log_prob2inter[index][labels_[index]]:
Cscl_pred_inter[index] = 0
if lp_[index][labels_[index]] > log_prob2inter[index][labels_[index]]:
Cscl_pred_inter[index] = 1
# 2. HSCL
Mscl_tav = CKSCL_m(ft_scl, labels1=Mscl_pred_t, labels2=Mscl_pred_a, labels3=Mscl_pred_v, weight1=create_class_weight_SCL(Mscl_pred_t), weight2=create_class_weight_SCL(Mscl_pred_a), weight3=create_class_weight_SCL(Mscl_pred_v))
Cscl_c = CKSCL_c(ft_scl, labels1=Cscl_pred_intra, labels2=Cscl_pred_inter, weight1=create_class_weight_SCL(Cscl_pred_intra), weight2=create_class_weight_SCL(Cscl_pred_inter))
loss = loss_function(log_prob, label)
preds.append(torch.argmax(log_prob, 1).cpu().numpy())
labels.append(label.cpu().numpy())
losses.append(loss.item())
if train:
if args.calibrate:
loss = loss + args.rank_coff * rank_loss
if args.contrastlearning:
loss = loss + args.mscl_coff * Mscl_tav + args.cscl_coff * Cscl_c
loss.backward()
optimizer.step()
if preds!=[]:
preds = np.concatenate(preds)
labels = np.concatenate(labels)
else:
return float('nan'), float('nan'), [], [], float('nan'), [], [], [], [], []
vids += data[-1]
ei = ei.data.cpu().numpy()
et = et.data.cpu().numpy()
en = en.data.cpu().numpy()
el = np.array(el)
labels = np.array(labels)
preds = np.array(preds)
vids = np.array(vids)
avg_loss = round(np.sum(losses)/len(losses), 4)
avg_accuracy = round(accuracy_score(labels, preds)*100, 2)
avg_fscore = round(f1_score(labels,preds, average='weighted')*100, 2)
return avg_loss, avg_accuracy, labels, preds, avg_fscore, vids, ei, et, en, el
if __name__ == '__main__':
path = './saved/IEMOCAP/'
parser = argparse.ArgumentParser()
parser.add_argument('--no-cuda', action='store_true', default=False, help='does not use GPU')
parser.add_argument('--base-model', default='LSTM', help='base recurrent model, must be one of DialogRNN/LSTM/GRU')
parser.add_argument('--graph-model', action='store_true', default=True, help='whether to use graph model after recurrent encoding')
parser.add_argument('--nodal-attention', action='store_true', default=True, help='whether to use nodal attention in graph model: Equation 4,5,6 in Paper')
parser.add_argument('--windowp', type=int, default=10, help='context window size for constructing edges in graph model for past utterances')
parser.add_argument('--windowf', type=int, default=10, help='context window size for constructing edges in graph model for future utterances')
parser.add_argument('--lr', type=float, default=0.0001, metavar='LR', help='learning rate')
parser.add_argument('--l2', type=float, default=0.00003, metavar='L2', help='L2 regularization weight')
parser.add_argument('--rec-dropout', type=float, default=0.1, metavar='rec_dropout', help='rec_dropout rate')
parser.add_argument('--dropout', type=float, default=0.5, metavar='dropout', help='dropout rate')
parser.add_argument('--batch-size', type=int, default=32, metavar='BS', help='batch size')
parser.add_argument('--epochs', type=int, default=60, metavar='E', help='number of epochs')
parser.add_argument('--class-weight', action='store_true', default=True, help='use class weights')
parser.add_argument('--active-listener', action='store_true', default=False, help='active listener')
parser.add_argument('--attention', default='general', help='Attention type in DialogRNN model')
parser.add_argument('--tensorboard', action='store_true', default=False, help='Enables tensorboard log')
parser.add_argument('--graph_type', default='relation', help='relation/GCN3/DeepGCN/MMGCN/MMGCN2')
parser.add_argument('--use_topic', action='store_true', default=False, help='whether to use topic information')
parser.add_argument('--alpha', type=float, default=0.2, help='alpha')
parser.add_argument('--multiheads', type=int, default=6, help='multiheads')
parser.add_argument('--graph_construct', default='full', help='single/window/fc for MMGCN2; direct/full for others')
parser.add_argument('--use_gcn', action='store_true', default=False, help='whether to combine spectral and none-spectral methods or not')
parser.add_argument('--use_residue', action='store_true', default=False, help='whether to use residue information or not')
parser.add_argument('--multi_modal', action='store_true', default=False, help='whether to use multimodal information')
parser.add_argument('--mm_fusion_mthd', default='concat', help='method to use multimodal information: concat, gated, concat_subsequently')
parser.add_argument('--modals', default='avl', help='modals to fusion')
parser.add_argument('--av_using_lstm', action='store_true', default=False, help='whether to use lstm in acoustic and visual modality')
parser.add_argument('--Deep_GCN_nlayers', type=int, default=4, help='Deep_GCN_nlayers')
parser.add_argument('--Dataset', default='IEMOCAP', help='dataset to train and test')
parser.add_argument('--use_speaker', action='store_true', default=True, help='whether to use speaker embedding')
parser.add_argument('--use_modal', action='store_true', default=False, help='whether to use modal embedding')
parser.add_argument('--norm', default='LN2', help='NORM type')
parser.add_argument('--testing', action='store_true', default=False, help='testing')
parser.add_argument('--num_L', type=int, default=3, help='num_hyperconvs')
parser.add_argument('--num_K', type=int, default=4, help='num_convs')
parser.add_argument('--seed', type=int)
# parser.add_argument('--run_index', type=int)
parser.add_argument('--calibrate', default=False, action='store_true')
parser.add_argument('--rank_coff', type=float, default=0)
parser.add_argument('--contrastlearning', default=False, action='store_true')
parser.add_argument('--mscl_coff', type=float, default=0)
parser.add_argument('--cscl_coff', type=float, default=0)
parser.add_argument('--courselearning', default=False, action='store_true')
parser.add_argument('--epoch_ratio', type=float, default=0)
parser.add_argument('--scheduler_steps', type=int, default=0)
args = parser.parse_args()
today = datetime.datetime.now()
print(args)
if args.av_using_lstm:
name_ = args.mm_fusion_mthd+'_'+args.modals+'_'+args.graph_type+'_'+args.graph_construct+'using_lstm_'+args.Dataset
else:
name_ = args.mm_fusion_mthd+'_'+args.modals+'_'+args.graph_type+'_'+args.graph_construct+str(args.Deep_GCN_nlayers)+'_'+args.Dataset
if args.use_speaker:
name_ = name_+'_speaker'
if args.use_modal:
name_ = name_+'_modal'
args.cuda = torch.cuda.is_available() and not args.no_cuda
if args.cuda:
print('Running on GPU')
else:
print('Running on CPU')
if args.tensorboard:
from tensorboardX import SummaryWriter
writer = SummaryWriter()
cuda = args.cuda
n_epochs = args.epochs
batch_size = args.batch_size
modals = args.modals
feat2dim = {'IS10':1582,'3DCNN':512,'textCNN':100,'bert':768,'denseface':342,'MELD_text':600,'MELD_audio':300}
D_audio = feat2dim['IS10'] if args.Dataset=='IEMOCAP' else feat2dim['MELD_audio']
D_visual = feat2dim['denseface']
D_text = 1024 #feat2dim['textCNN'] if args.Dataset=='IEMOCAP' else feat2dim['MELD_text']
if args.multi_modal:
if args.mm_fusion_mthd=='concat':
if modals == 'avl':
D_m = D_audio+D_visual+D_text
elif modals == 'av':
D_m = D_audio+D_visual
elif modals == 'al':
D_m = D_audio+D_text
elif modals == 'vl':
D_m = D_visual+D_text
else:
raise NotImplementedError
else:
D_m = 1024
else:
if modals == 'a':
D_m = D_audio
elif modals == 'v':
D_m = D_visual
elif modals == 'l':
D_m = D_text
else:
raise NotImplementedError
D_g = 512 if args.Dataset=='IEMOCAP' else 1024
D_p = 150
D_e = 100
D_h = 100
D_a = 100
graph_h = 512
n_speakers = 9 if args.Dataset=='MELD' else 2
n_classes = 7 if args.Dataset=='MELD' else 6 if args.Dataset=='IEMOCAP' else 1
if args.graph_model:
seed_everything(args.seed)
model = Model(args.base_model,
D_m, D_g, D_p, D_e, D_h, D_a, graph_h,
n_speakers=n_speakers,
max_seq_len=200,
window_past=args.windowp,
window_future=args.windowf,
n_classes=n_classes,
listener_state=args.active_listener,
context_attention=args.attention,
dropout=args.dropout,
nodal_attention=args.nodal_attention,
no_cuda=args.no_cuda,
graph_type=args.graph_type,
use_topic=args.use_topic,
alpha=args.alpha,
multiheads=args.multiheads,
graph_construct=args.graph_construct,
use_GCN=args.use_gcn,
use_residue=args.use_residue,
D_m_v = D_visual,
D_m_a = D_audio,
modals=args.modals,
att_type=args.mm_fusion_mthd,
av_using_lstm=args.av_using_lstm,
Deep_GCN_nlayers=args.Deep_GCN_nlayers,
dataset=args.Dataset,
use_speaker=args.use_speaker,
use_modal=args.use_modal,
norm = args.norm,
num_L = args.num_L,
num_K = args.num_K)
model_mm = Model(args.base_model,
D_m, D_g, D_p, D_e, D_h, D_a, graph_h,
n_speakers=n_speakers,
max_seq_len=200,
window_past=args.windowp,
window_future=args.windowf,
n_classes=n_classes,
listener_state=args.active_listener,
context_attention=args.attention,
dropout=args.dropout,
nodal_attention=args.nodal_attention,
no_cuda=args.no_cuda,
graph_type=args.graph_type,
use_topic=args.use_topic,
alpha=args.alpha,
multiheads=args.multiheads,
graph_construct=args.graph_construct,
use_GCN=args.use_gcn,
use_residue=args.use_residue,
D_m_v = D_visual,
D_m_a = D_audio,
modals=args.modals,
att_type=args.mm_fusion_mthd,
av_using_lstm=args.av_using_lstm,
Deep_GCN_nlayers=args.Deep_GCN_nlayers,
dataset=args.Dataset,
use_speaker=args.use_speaker,
use_modal=args.use_modal,
norm = args.norm,
num_L = args.num_L,
num_K = args.num_K)
model_intra = Model_Intra(args.base_model,
D_m, D_g, D_p, D_e, D_h, D_a, graph_h,
n_speakers=n_speakers,
max_seq_len=200,
window_past=args.windowp,
window_future=args.windowf,
n_classes=n_classes,
listener_state=args.active_listener,
context_attention=args.attention,
dropout=args.dropout,
nodal_attention=args.nodal_attention,
no_cuda=args.no_cuda,
graph_type=args.graph_type,
use_topic=args.use_topic,
alpha=args.alpha,
multiheads=args.multiheads,
graph_construct=args.graph_construct,
use_GCN=args.use_gcn,
use_residue=args.use_residue,
D_m_v = D_visual,
D_m_a = D_audio,
modals=args.modals,
att_type=args.mm_fusion_mthd,
av_using_lstm=args.av_using_lstm,
Deep_GCN_nlayers=args.Deep_GCN_nlayers,
dataset=args.Dataset,
use_speaker=args.use_speaker,
use_modal=args.use_modal,
norm = args.norm,
num_L = args.num_L,
num_K = args.num_K)
model_inter = Model_Inter(args.base_model,
D_m, D_g, D_p, D_e, D_h, D_a, graph_h,
n_speakers=n_speakers,
max_seq_len=200,
window_past=args.windowp,
window_future=args.windowf,
n_classes=n_classes,
listener_state=args.active_listener,
context_attention=args.attention,
dropout=args.dropout,
nodal_attention=args.nodal_attention,
no_cuda=args.no_cuda,
graph_type=args.graph_type,
use_topic=args.use_topic,
alpha=args.alpha,
multiheads=args.multiheads,
graph_construct=args.graph_construct,
use_GCN=args.use_gcn,
use_residue=args.use_residue,
D_m_v = D_visual,
D_m_a = D_audio,
modals=args.modals,
att_type=args.mm_fusion_mthd,
av_using_lstm=args.av_using_lstm,
Deep_GCN_nlayers=args.Deep_GCN_nlayers,
dataset=args.Dataset,
use_speaker=args.use_speaker,
use_modal=args.use_modal,
norm = args.norm,
num_L = args.num_L,
num_K = args.num_K)
print ('Graph NN with', args.base_model, 'as base model.')
name = 'Graph'
else:
if args.base_model == 'GRU':
model = GRUModel(D_m, D_e, D_h,
n_classes=n_classes,
dropout=args.dropout)
print ('Basic GRU Model.')
elif args.base_model == 'LSTM':
model = LSTMModel(D_m, D_e, D_h,
n_classes=n_classes,
dropout=args.dropout)
print ('Basic LSTM Model.')
else:
print ('Base model must be one of DialogRNN/LSTM/GRU/Transformer')
raise NotImplementedError
name = 'Base'
if cuda:
model.cuda()
model_mm.cuda()
model_intra.cuda()
model_inter.cuda()
if args.Dataset == 'IEMOCAP':
loss_weights = torch.FloatTensor([1/0.086747,
1/0.144406,
1/0.227883,
1/0.160585,
1/0.127711,
1/0.252668])
if args.Dataset == 'MELD':
loss_function = FocalLoss()
else:
if args.class_weight:
if args.graph_model:
#loss_function = FocalLoss()
loss_function = nn.NLLLoss(loss_weights.cuda() if cuda else loss_weights)
else:
loss_function = MaskedNLLLoss(loss_weights.cuda() if cuda else loss_weights)
else:
if args.graph_model:
loss_function = nn.NLLLoss()
else:
loss_function = MaskedNLLLoss()
optimizer = optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.l2)
lr = args.lr
best_fscore, best_loss, best_label, best_pred, best_mask = None, None, None, None, None
all_fscore, all_acc, all_loss = [], [], []
if args.testing:
if args.Dataset == 'MELD':
train_loader, valid_loader, test_loader = get_MELD_loaders(valid=0.0,
batch_size=batch_size,
num_workers=2)
elif args.Dataset == 'IEMOCAP':
train_loader, valid_loader, test_loader = get_IEMOCAP_loaders(valid=0.0,
batch_size=batch_size,
num_workers=2)
else:
print("There is no such dataset")
state = torch.load("best_model.pth.tar")
model.load_state_dict(state)
print('testing loaded model')
test_loss, test_acc, test_label, test_pred, test_fscore, _, _, _, _, _ = train_or_eval_graph_model(model, loss_function, test_loader, 0, cuda, args.modals, dataset=args.Dataset)
print('test_acc:',test_acc,'test_fscore:',test_fscore)
for e in range(n_epochs):
if args.courselearning:
epoch_ratio = min(1, round(args.epoch_ratio*int(e/args.scheduler_steps+1),2))
else:
epoch_ratio = -1
print("current ratio = ", epoch_ratio)
start_time = time.time()
if args.Dataset == 'MELD':
train_loader, valid_loader, test_loader = get_MELD_loaders(valid=0.0,
batch_size=batch_size,
num_workers=2,
epoch_ratio=epoch_ratio)
elif args.Dataset == 'IEMOCAP':
train_loader, valid_loader, test_loader = get_IEMOCAP_loaders(valid=0.0,
batch_size=batch_size,
num_workers=2,
epoch_ratio=epoch_ratio)
else:
print("There is no such dataset")
if args.graph_model:
train_loss, train_acc, _, _, train_fscore, _, _, _, _, _ = train_or_eval_graph_model(model, model_mm, model_intra, model_inter, loss_function, train_loader, e, cuda, args.modals, optimizer, True, dataset=args.Dataset)
valid_loss, valid_acc, _, _, valid_fscore, _, _, _, _, _ = train_or_eval_graph_model(model, model_mm, model_intra, model_inter,loss_function, valid_loader, e, cuda, args.modals, dataset=args.Dataset)
test_loss, test_acc, test_label, test_pred, test_fscore, _, _, _, _, _ = train_or_eval_graph_model(model, model_mm, model_intra, model_inter,loss_function, test_loader, e, cuda, args.modals, dataset=args.Dataset)
all_fscore.append(test_fscore)
else:
train_loss, train_acc, _, _, _, train_fscore, _ = train_or_eval_model(model, loss_function, train_loader, e, optimizer, True)
valid_loss, valid_acc, _, _, _, valid_fscore, _ = train_or_eval_model(model, loss_function, valid_loader, e)
test_loss, test_acc, test_label, test_pred, test_mask, test_fscore, attentions = train_or_eval_model(model, loss_function, test_loader, e)
all_fscore.append(test_fscore)
if best_loss == None or best_loss > test_loss:
best_loss, best_label, best_pred = test_loss, test_label, test_pred
if best_fscore == None or best_fscore < test_fscore:
best_fscore = test_fscore
best_label, best_pred = test_label, test_pred
if args.tensorboard:
writer.add_scalar('test: accuracy', test_acc, e)
writer.add_scalar('test: fscore', test_fscore, e)
writer.add_scalar('train: accuracy', train_acc, e)
writer.add_scalar('train: fscore', train_fscore, e)
print('epoch: {}, train_loss: {}, train_acc: {}, train_fscore: {}, test_loss: {}, test_acc: {}, test_fscore: {}, time: {} sec'.\
format(e+1, train_loss, train_acc, train_fscore, test_loss, test_acc, test_fscore, round(time.time()-start_time, 2)))
if (e+1)%10 == 0:
print ('----------best F-Score:', max(all_fscore))
print(classification_report(best_label, best_pred, sample_weight=best_mask,digits=4))
print(confusion_matrix(best_label,best_pred,sample_weight=best_mask))