-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfused_ir.py
237 lines (207 loc) · 9.85 KB
/
fused_ir.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
from typing import List, Dict
from parsing import Tensor, SparseIndex, IntermediateResult
import copy
def get_includes():
header = ""
header +="#include \"taco.h\"\n"
header +="using namespace taco;\n"
header +="#include \"util.hpp\"\n"
return header
class SparseContraction():
def __init__(self, result: Tensor, operands: List[Tensor], iterands: List[SparseIndex], input_tensor_ordering: Dict[Tensor, List[SparseIndex]]):
self.lhs = result
self.rhs = operands
self.loops = iterands
self.loop_iter = iter(self.loops)
self.inp_orders = input_tensor_ordering
def get_loops(self):
return self.loops
def get_next_loop(self):
return next(self.loop_iter)
def lower_to_taco(self, index_order: List[SparseIndex]):
return f"{self.lhs.emit_access(index_order)} += " + "*".join([t.emit_access(self.inp_orders[t] if t in self.inp_orders else index_order) for t in self.rhs])
def __repr__(self, depth=0):
return "".join(["\t"]*depth) + f"{self.lhs} += " + "*".join([t.__repr__(self.inp_orders[t] if t in self.inp_orders else None) for t in self.rhs])
def place_contraction(node, contr: SparseContraction):
def make_single_fibre(root_node, contr):
try:
next_loop = contr.get_next_loop()
except StopIteration:
root_node.add_contraction(contr)
return
new_node = SparseIteration(next_loop, [contr])
root_node.add_child(new_node)
return make_single_fibre(new_node, contr)
# to respect the dependency, we can only look at the last child node
if len(node.children) == 0:
#new_node = SparseIteration(next_loop, [contr])
return make_single_fibre(node, contr)
else:
last_child = node.children[-1]
try:
next_loop = contr.get_next_loop()
except StopIteration:
# we are done
last_child.add_contraction(contr)
return
if last_child.iterand == next_loop:
# that's his problem
return place_contraction(last_child, contr)
# if we get here, we need to add a new node
new_node = SparseIteration(next_loop, [contr])
node.add_child(new_node)
return make_single_fibre(new_node, contr)
class FusedIR:
def __init__(self, generator):
self.children = []
solver_output = []
self.intermediate_tensors = []
self.og_tensors = []
self.final_result_tensor = None
self.tensor_orders = {}
for unfused_set in generator:
solver_output.append(unfused_set)
stmt, _, _ = unfused_set
if isinstance(stmt.get_lhs(), IntermediateResult):
self.intermediate_tensors.append(stmt.get_lhs())
else:
self.og_tensors.append(stmt.get_lhs())
self.final_result_tensor = stmt.get_lhs()
this_og_tensors = filter(lambda t: not isinstance(
t, IntermediateResult), stmt.get_rhs())
self.og_tensors.extend(this_og_tensors)
first_tree = None
for child in solver_output:
stmt, loop_order, tensor_order = child
self.tensor_orders.update(tensor_order)
if first_tree is None:
contr_leaf = SparseContraction(
stmt.get_lhs(), stmt.get_rhs(), loop_order, tensor_order)
this_iter = SparseIteration(loop_order[0], [contr_leaf])
first_tree = this_iter
self.add_child(first_tree)
for l in loop_order[1:]:
new_iter = SparseIteration(l, [contr_leaf])
this_iter.add_child(new_iter)
this_iter = new_iter
else:
contr_leaf = SparseContraction(
stmt.get_lhs(), stmt.get_rhs(), loop_order, tensor_order)
place_contraction(self, contr_leaf)
def add_child(self, child):
self.children.append(child)
def get_path_suchthat(self, predicate):
for child in self.children:
try_path = child.get_path_suchthat(predicate)
if try_path is not None:
return try_path
raise ValueError("No path found")
# this reduces the fused dimensions from the intermediate tensors
def reduce_intermediates(self):
for int_tens in self.intermediate_tensors:
producer_path = self.get_path_suchthat(lambda x: x.lhs == int_tens)
consumer_path = self.get_path_suchthat(lambda x: int_tens in x.rhs)
indices_to_fuse = []
for i in range(len(producer_path)):
if producer_path[i] == consumer_path[i]:
indices_to_fuse.append(producer_path[i])
else:
break
if len(indices_to_fuse) > 0:
int_tens.fuse(indices_to_fuse)
def lower_to_taco(self):
if len(self.children) > 1:
raise NotImplementedError("Only one root node supported")
only_child = self.children[0]
return only_child.lower_to_taco([]) + ";"
def lower_nary_contraction(self):
lhs_tensorder = self.tensor_orders[self.final_result_tensor] if self.final_result_tensor in self.tensor_orders else None
lhs = f"{self.final_result_tensor.emit_access(lhs_tensorder, varname=False)}"
rhs = "*".join([t.emit_access((self.tensor_orders[t]
if t in self.tensor_orders else None), varname=False) for t in filter(lambda t: t != self.final_result_tensor, self.og_tensors)])
# TODO remove before flight
print(f"rhs shapes: {self.tensor_orders}")
return f"{lhs} += {rhs};"
def lower_intermediate_tensors(self):
return "\n".join([int_tens.lower_to_taco() for int_tens in self.intermediate_tensors])
def lower_og_tensors(self):
return "\n".join([og_tens.lower_var_decl() for og_tens in self.og_tensors])
def emit_taco_kernel(self, kernel_name, add_timing=True):
all_indices = set([i for t in self.og_tensors for i in t.get_shape()])
stub_names = [f"Tensor<double> {t.name}_disk" for t in self.og_tensors]
header = f"void {kernel_name}(" + ", ".join(stub_names) + ") {"
header += "\n".join([i.lower_to_taco() for i in all_indices])
# add transpose calls
for tens in self.og_tensors:
if tens in self.tensor_orders and self.tensor_orders[tens] != tens.get_shape():
old_shape = ", ".join([str(i) for i in tens.get_shape()])
new_shape = ", ".join([str(i)
for i in self.tensor_orders[tens]])
old_name = tens.name + "_disk"
header += f"Tensor<double> {tens.name} = getCSFOrder({old_name}, {{{old_shape}}}, {{{new_shape}}});\n"
else:
header += f"Tensor<double> {tens.name} = {tens.name}_disk;\n"
header += self.lower_og_tensors()
header += self.lower_intermediate_tensors()
header += f"auto fused_ir = {self.lower_to_taco()};"
header += self.lower_nary_contraction()
header += f"{self.final_result_tensor.name}.compile(fused_ir);"
header += "auto start = std::chrono::high_resolution_clock::now();"
header += f"{self.final_result_tensor.name}.assemble();"
header += f"{self.final_result_tensor.name}.compute();"
header += "auto end = std::chrono::high_resolution_clock::now();"
header += "std::chrono::duration<double, std::milli> elapsed = end - start;"
header += "std::cout << \"Time " + \
f"{kernel_name}: \"<< elapsed.count() <<\" ms \"<< std::endl;"
header += "}"
return header
def __repr__(self):
# print(self.loop_sequence)
return "\n".join([node.__repr__(0) for node in self.children])
class SparseIteration:
def __init__(self, iterand, reachable_contractions):
self.iterand = iterand
self.contractions = reachable_contractions
self.children = []
def add_child(self, child):
self.children.append(child)
def add_contraction(self, contr):
if contr not in self.contractions:
self.contractions.append(contr)
def get_path_suchthat(self, predicate):
try_path = None
for child in self.children:
try_path = child.get_path_suchthat(predicate)
if try_path is not None:
return [self.iterand] + try_path
if len(self.children) == 0:
for contr in self.contractions:
if predicate(contr):
return [self.iterand]
return try_path
def lower_to_taco(self, indices_so_far):
child_str = ""
indices_so_far = copy.copy(indices_so_far)
indices_so_far.append(self.iterand)
if len(self.children) == 0:
# emit contractions
try:
assert len(self.contractions) == 1
except AssertionError:
raise AssertionError(
"Can't handle multiple contractions fused throughout")
child_str = f"{self.contractions[0].lower_to_taco(indices_so_far)}"
elif len(self.children) == 1:
child_str = self.children[0].lower_to_taco(indices_so_far)
else:
child_str = f"{self.children[0].lower_to_taco(indices_so_far)}"
for child in self.children[1:]:
child_str = f"where({child.lower_to_taco(indices_so_far)}, {child_str})"
my_str = f"forall({self.iterand}, {child_str})"
return my_str
def __repr__(self, depth=0):
#print(f"in repr for {self.iterand}")
if len(self.children) == 0:
return "".join(["\t"]*depth) + f"{self.iterand}" + "\n".join([c.__repr__(depth+1) for c in self.contractions])
else:
return "".join(["\t"]*depth) + f"{self.iterand}\n" + "\n".join([c.__repr__(depth+1) for c in self.children])