Skip to content

Latest commit

 

History

History

AntBO

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

AntBO

A combinatorial Bayesian Optimisation framework enabling efficient in silico design of the CDRH3 region.

AntBO overview

This repo provides the official implementation of AntBO, as well as all the code needed to reproduce the experiments presented in AntBO: Towards Real-World Automated Antibody Design with Combinatorial Bayesian Optimisation.

Setup

The code has been tested on Ubuntu 18.04.4 LTS with python 3.9.7

Conda environment

conda env create -f environment.yaml 
conda activate DGM

Antigen simulator: Absolut!

Install Absolut! by following instructions of their README: https://github.com/csi-greifflab/Absolut#installation.

Install all pre-computed structures (~33GB)

PATH_TO_ABSOLUT=./Absolut # put the path of the directory where Absolut! is installed
cd $PATH_TO_ABSOLUT
aria2c -i ../urls.txt --auto-file-renaming=false --continue=true

Demo

To run AntBO (as well as the other baselines COMBO, Genetic Algorithm, and Random Search), the user needs to specify a config.yaml file containing the parameters of the run (a default config file is also provided).

Given a config file, AntBO can be run using the following command line:

 python ./bo/main.py --config ./bo/config.yaml --n_trials 5 --seed 42 --antigens_file ./dataloader/core_antigens.txt 
  • Using --n_trials 5 and --seed 42 implies that the optimisation will be run over 5 random seeds starting from seed 42.
  • --antigens_file ./dataloader/core_antigens.txt indicates that AntBO will be run on each of the antigens listed in the file ./dataloader/core_antigens.txt.
  • The results will be stored in the folder specified in the config.yaml file (under the save_dir field).

Results visualisation

To plot the regret curve associated to one run of AntBO on an antigen, one can either run the following:

import numpy as np
import pandas as pd
import os

import matplotlib.pyplot as plt

from utilities.misc_utils import load_w_pickle
from typing import *

from bo.main import BOExperiments
from task.utils import plot_mean_std

# --- Select for which antigen you want to plot the regret curve --- #
antigen_name = ...

# --- These must match your config.yaml --- #
save_path: str = ... 
kernel_type = "transformed_overlap"  
cdr_constraints = 1
seq_len: int = 11
search_strategy = "local"

init_seed = 42
n_trials = 5

# ----------- Collect evolution of scores for each seed ----------- #

results = []
for seed in range(init_seed, init_seed + n_trials):
    
    result_path_root = BOExperiments.get_path(
        save_path=save_path,
        antigen=antigen_name,
        kernel_type=kernel_type, 
        seed=seed,
        cdr_constraints=cdr_constraints,
        seq_len=seq_len,
        search_strategy=search_strategy,
    )

    result_path = os.path.join(result_path_root, 'results.csv')

    if not os.path.exists(result_path):
        continue

    data = pd.read_csv(result_path).BestValue.values
    
    results.append(data)

# --------------------- Plot the regret curve --------------------- #

ax = plot_mean_std(results)
ax.set_xlabel("Num. evaluations", fontsize=16)

or rely on the convergence curve plotting script fed with a configuration file.

python ./visualise_results/plot_convergence_curve.py --config ./visualise_results/convergence_curve_config.yaml

Absolut 3D Visualisation

Follow the instructions in visualise3d.txt

Cite us

@misc{https://doi.org/10.48550/arxiv.2201.12570,
  doi = {10.48550/ARXIV.2201.12570},
  url = {https://arxiv.org/abs/2201.12570},
  author = {Khan, Asif and Cowen-Rivers, Alexander I. and Deik, Derrick-Goh-Xin and Grosnit, Antoine and Dreczkowski, Kamil and Robert, Philippe A. and Greiff, Victor and Tutunov, Rasul and Bou-Ammar, Dany and Wang, Jun and Bou-Ammar, Haitham},
  keywords = {Biomolecules (q-bio.BM), Artificial Intelligence (cs.AI), Machine Learning (cs.LG), Neural and Evolutionary Computing (cs.NE), Machine Learning (stat.ML), FOS: Biological sciences, FOS: Biological sciences, FOS: Computer and information sciences, FOS: Computer and information sciences},
  title = {AntBO: Towards Real-World Automated Antibody Design with Combinatorial Bayesian Optimisation},
  publisher = {arXiv},
  year = {2022},
  copyright = {arXiv.org perpetual, non-exclusive license}
}

Contributors

Asif Khan, Alexander I. Cowen-Rivers, Derrick-Goh-Xin Deik, Antoine Grosnit, Kamil Dreczkowski, Philippe A. Robert, Victor Greiff, Rasul Tutunov, Dany Bou-Ammar, Jun Wang, Haitham Bou-Ammar -- Huawei Noah's Ark lab.