forked from Liang-yc/lgp_mura_detector
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdetect.cpp
547 lines (469 loc) · 17.9 KB
/
detect.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
#include <opencv2\opencv.hpp>
#include <iostream>
#include <string>
#include <stdio.h>
//#include <math.h>
//#include "rect_detector.h"
//#include "artifacts_detector.h"
//#include "mura_detector.h"
//#include "curve_detector.h"
#include <cv.hpp>
using namespace cv;
using namespace std;
//定义灰度图像变量
IplImage *g_GrayImage = NULL;
//定义二值化图片变量
IplImage *g_BinaryImage = NULL;
//定义二值化窗口标题
const char *WindowBinaryTitle = "二值化图片";
//定义滑块响应函数
//创建源图像窗口标题变量
const char *WindowSrcTitle = "灰度图像";
//创建滑块标题变量
const char *TheSliderTitle = "二值化阀值";
//const char *SrcPath = "C:\\Users\\lenovo\\Desktop\\1.jpg"; ////定义图片路径
IplImage *g_pGrayImage_liantong = NULL;
IplImage *g_pBinralyImage_liantong = NULL;
int contour_num = 0; //数字编号
char number_buf[10]; ////数字编号存入数组,puttext
#define num_col 11 ////二维数组的列,每一个点缺陷信息的详细信息
long int liantong_all_area = 0; ////连通区域总面积
long int Rect_all_area = 0; //// 保存最小外接矩形总的面积
////=====================================================================
struct my_struct1{
double scale; //// 定义显示图像的比例
const int threshold_value_binaryzation; ////定义第一次二值化阀值
const int threshold_value_second_binaryzation; ////定义第二次二值化阀值
};
my_struct1 picture = { 0.5, 50, 100 };
////=====================================================================
struct my_struct2{
int Model1_k1; ////图像膨胀腐蚀
int Model1_k2; ////图像膨胀腐蚀
int Model2_k1; ////图像膨胀腐蚀
int Model2_k2; ////图像膨胀腐蚀
};
my_struct2 value = { 5, 2, 3, 2 };
////=====================================================================
struct my_struct3{
double maxarea; ////最大缺陷面积
double minarea; ////最小显示保留的缺陷面积
double font_scale; ////字体大小
int font_thickness; ////字体粗细
const int Feature_value2_number; ////定义一个二维数组的列,即缺陷的个数
};
my_struct3 value2 = { 5000, 1000, 0.6, 0.8, 100 };
////=====================================================================
struct my_struct4{
const int hough_Canny_thresh1;
const int hough_Canny_thresh2;
const int hough_Canny_kernel;
const int cvHoughLines2_thresh; ////像素值大于多少才显示,值越大,显示的线段越少
const int cvHoughLines2_param1; ////显示线段的最小长度
const int cvHoughLines2_param2; ////线段之间的 最小间隔
};
my_struct4 Hough = { 50, 100, 3, 50, 20, 10 };
void fft2(IplImage *src, IplImage *dst)
{ //实部、虚部
IplImage *image_Re = 0, *image_Im = 0, *Fourier = 0;
// int i, j;
image_Re = cvCreateImage(cvGetSize(src), IPL_DEPTH_64F, 1); //实部
//Imaginary part
image_Im = cvCreateImage(cvGetSize(src), IPL_DEPTH_64F, 1); //虚部
//2 channels (image_Re, image_Im)
Fourier = cvCreateImage(cvGetSize(src), IPL_DEPTH_64F, 2);
// Real part conversion from u8 to 64f (double)
cvConvertScale(src, image_Re);
// Imaginary part (zeros)
cvZero(image_Im);
// Join real and imaginary parts and stock them in Fourier image
cvMerge(image_Re, image_Im, 0, 0, Fourier);
// Application of the forward Fourier transform
cvDFT(Fourier, dst, CV_DXT_FORWARD);
cvReleaseImage(&image_Re);
cvReleaseImage(&image_Im);
cvReleaseImage(&Fourier);
}
void fft2shift(IplImage *src, IplImage *dst)
{
IplImage *image_Re = 0, *image_Im = 0;
int nRow, nCol, i, j, cy, cx;
double scale, shift, tmp13, tmp24;
image_Re = cvCreateImage(cvGetSize(src), IPL_DEPTH_64F, 1);
//Imaginary part
image_Im = cvCreateImage(cvGetSize(src), IPL_DEPTH_64F, 1);
cvSplit(src, image_Re, image_Im, 0, 0);
//具体原理见冈萨雷斯数字图像处理p123
// Compute the magnitude of the spectrum Mag = sqrt(Re^2 + Im^2)
//计算傅里叶谱
cvPow(image_Re, image_Re, 2.0);
cvPow(image_Im, image_Im, 2.0);
cvAdd(image_Re, image_Im, image_Re);
cvPow(image_Re, image_Re, 0.5);
//对数变换以增强灰度级细节(这种变换使以窄带低灰度输入图像值映射
//一宽带输出值,具体可见冈萨雷斯数字图像处理p62)
// Compute log(1 + Mag);
cvAddS(image_Re, cvScalar(1.0), image_Re); // 1 + Mag
cvLog(image_Re, image_Re); // log(1 + Mag)
//Rearrange the quadrants of Fourier image so that the origin is at the image center
nRow = src->height;
nCol = src->width;
cy = nRow / 2; // image center
cx = nCol / 2;
//CV_IMAGE_ELEM为OpenCV定义的宏,用来读取图像的像素值,这一部分就是进行中心变换
for (j = 0; j < cy; j++){
for (i = 0; i < cx; i++){
//中心化,将整体份成四块进行对角交换
tmp13 = CV_IMAGE_ELEM(image_Re, double, j, i);
CV_IMAGE_ELEM(image_Re, double, j, i) = CV_IMAGE_ELEM(
image_Re, double, j + cy, i + cx);
CV_IMAGE_ELEM(image_Re, double, j + cy, i + cx) = tmp13;
tmp24 = CV_IMAGE_ELEM(image_Re, double, j, i + cx);
CV_IMAGE_ELEM(image_Re, double, j, i + cx) =
CV_IMAGE_ELEM(image_Re, double, j + cy, i);
CV_IMAGE_ELEM(image_Re, double, j + cy, i) = tmp24;
}
}
//归一化处理将矩阵的元素值归一为[0,255]
//[(f(x,y)-minVal)/(maxVal-minVal)]*255
double minVal = 0, maxVal = 0;
// Localize minimum and maximum values
cvMinMaxLoc(image_Re, &minVal, &maxVal);
// Normalize image (0 - 255) to be observed as an u8 image
scale = 255 / (maxVal - minVal);
shift = -minVal * scale;
cvConvertScale(image_Re, dst, scale, shift);
cvReleaseImage(&image_Re);
cvReleaseImage(&image_Im);
}
////=====================================================================
//自适应中值滤波
uchar adaptiveProcess(const Mat &im, int row, int col, int kernelSize, int maxSize)
{
vector<uchar> pixels;
for (int a = -kernelSize / 2; a <= kernelSize / 2; a++)
for (int b = -kernelSize / 2; b <= kernelSize / 2; b++)
{
pixels.push_back(im.at<uchar>(row + a, col + b));
}
sort(pixels.begin(), pixels.end());
auto min = pixels[0];
auto max = pixels[kernelSize * kernelSize - 1];
auto med = pixels[kernelSize * kernelSize / 2];
auto zxy = im.at<uchar>(row, col);
if (med > min && med < max)
{
// to B
if (zxy > min && zxy < max)
return zxy;
else
return med;
}
else
{
kernelSize += 2;
if (kernelSize <= maxSize)
return adaptiveProcess(im, row, col, kernelSize, maxSize); // 增大窗口尺寸,继续A过程。
else
return med;
}
}
int** on_trackbar(const char *SrcPath = "1.BMP"){
CvSeq* contour = 0;
CvSeq* _contour = contour;
//定义存放数组的二维数组,返回指针数组
int** Feature_value2 = 0;
Feature_value2 = new int*[value2.Feature_value2_number];
IplImage *SrcImage_or;
CvSize src_sz;
////===============================================================================================预处理
//载入原图
printf("预处理\n");
IplImage *SrcImage_origin = cvLoadImage(SrcPath, CV_LOAD_IMAGE_UNCHANGED);
//缩放
src_sz.width = SrcImage_origin->width* picture.scale;
src_sz.height = SrcImage_origin->height* picture.scale;
SrcImage_or = cvCreateImage(src_sz, SrcImage_origin->depth, SrcImage_origin->nChannels);
cvResize(SrcImage_origin, SrcImage_or, CV_INTER_CUBIC);
//cvNamedWindow("原图", 0);
////显示原图到原图窗口
//cvShowImage("原图", SrcImage_or);
//单通道灰度化处理
if (SrcImage_or->nChannels > 1)
{
g_GrayImage = cvCreateImage(cvSize(SrcImage_or->width, SrcImage_or->height), IPL_DEPTH_8U, 1);
cvCvtColor(SrcImage_or, g_GrayImage, CV_BGR2GRAY);
}
else
g_GrayImage = SrcImage_or;
//抑制曝光过度
//IplImage *src_threshold = cvCreateImage(cvGetSize(SrcImage_or), IPL_DEPTH_8U, 1);
//cvThreshold(SrcImage_or, src_threshold, 100, 255, CV_THRESH_BINARY);
for (int i = 0; i < src_sz.height; i++)
{
for (int j = 0; j < src_sz.width; j++)
{
if (cvGet2D(g_GrayImage, i, j).val[0]>100)
cvSet2D(g_GrayImage, i, j, 100);
}
}
//cvNamedWindow("抑制", 0);
//////显示原图到原图窗口
//cvShowImage("抑制", SrcImage_or);
/// 应用直方图均衡化
IplImage *src_his = cvCreateImage(src_sz, g_GrayImage->depth, g_GrayImage->nChannels);
cvEqualizeHist(g_GrayImage, src_his);
cvSaveImage("均衡化.jpg",src_his);
//fft变换
//IplImage *Fourier = cvCreateImage(cvGetSize(src_his), IPL_DEPTH_64F, 2);
//IplImage *dst = cvCreateImage(cvGetSize(src_his), IPL_DEPTH_64F, 2);
//IplImage *ImageRe = cvCreateImage(cvGetSize(src_his), IPL_DEPTH_64F, 1);
//IplImage *ImageIm = cvCreateImage(cvGetSize(src_his), IPL_DEPTH_64F, 1);
//IplImage *Image = cvCreateImage(cvGetSize(src_his), src_his->depth, src_his->nChannels);
//IplImage *ImageDst = cvCreateImage(cvGetSize(src_his), src_his->depth, src_his->nChannels);
//double Minval, Maxval;
//double scale;
//double shift;
//fft2(src_his, Fourier); //傅里叶变换
//fft2shift(Fourier, Image); //中心化
//cvDFT(Fourier, dst, CV_DXT_INV_SCALE);//实现傅里叶逆变换,并对结果进行缩放
//cvSplit(dst, ImageRe, ImageIm, 0, 0);
////对数组每个元素平方并存储在第二个参数中
//cvPow(ImageRe, ImageRe, 2);
//cvPow(ImageIm, ImageIm, 2);
//cvAdd(ImageRe, ImageIm, ImageRe, NULL);
//cvPow(ImageRe, ImageRe, 0.5);
//cvMinMaxLoc(ImageRe, &Minval, &Maxval, NULL, NULL);
//scale = 255 / (Maxval - Minval);
//shift = -Minval * scale;
////将shift加在ImageRe各元素按比例缩放的结果上,存储为ImageDst
//cvConvertScale(ImageRe, src_his, scale, shift);
//cvEqualizeHist(src_his, g_GrayImage);
//cvAbsDiff(g_GrayImage, ImageRe, g_GrayImage);
//cvNamedWindow("原图", CV_WINDOW_AUTOSIZE);
////显示原图到原图窗口
//cvShowImage("原图", SrcImage);
//创建二值化原图
printf("二值化\n");
g_BinaryImage = cvCreateImage(cvGetSize(g_GrayImage), IPL_DEPTH_8U, 1);
cvThreshold(g_GrayImage, g_BinaryImage, picture.threshold_value_binaryzation, 255, CV_THRESH_BINARY);
cvSaveImage("二值化.jpg", g_BinaryImage);
//动态阈值
//int blockSize = 7;
//int constValue = 10;
//cvAdaptiveThreshold(g_GrayImage, g_BinaryImage, 255, CV_ADAPTIVE_THRESH_GAUSSIAN_C, CV_THRESH_BINARY, blockSize, constValue);
//显示二值化后的图片
//cvNamedWindow("二值化", 0);
//cvShowImage("二值化", g_BinaryImage);
//g_BinaryImage = cvCloneImage(g_BinaryImage); //// 膨胀腐蚀
////===============================================================================================图像膨胀腐蚀
//////先cvDilate后cvErode,先膨胀后腐蚀,这个为闭合操作,图片中断裂处会缝合。
//////利用这个操作可以填充细小空洞,连接临近物体,平滑物体边缘,同时不明显改变物体面积
printf("膨胀腐蚀\n");
IplImage* temp_cvDilate = cvCreateImage(cvGetSize(g_BinaryImage), IPL_DEPTH_8U, 1);
IplImage* temp_cvErode = cvCreateImage(cvGetSize(g_BinaryImage), IPL_DEPTH_8U, 1);
IplImage* temp_cvErode_cvErode = cvCreateImage(cvGetSize(g_BinaryImage), IPL_DEPTH_8U, 1);
IplConvKernel * myModel1;
myModel1 = cvCreateStructuringElementEx( //自定义5*5,参考点(3,3)的矩形模板
value.Model1_k1, value.Model1_k1, value.Model1_k2, value.Model1_k2, CV_SHAPE_ELLIPSE//CV_SHAPE_ELLIPSE, 椭圆元素;
);
IplConvKernel * myModel2;
myModel2 = cvCreateStructuringElementEx( //自定义5*5,参考点(3,3)的矩形模板
value.Model2_k1, value.Model2_k1, value.Model2_k2, value.Model2_k2, CV_SHAPE_RECT //CV_SHAPE_RECT, 长方形元素;
);
//////先膨胀后腐蚀
cvDilate(g_BinaryImage, temp_cvDilate, myModel1, 1);//膨胀
cvErode(temp_cvDilate, temp_cvErode_cvErode, myModel2, 3);//腐蚀
//namedWindow("temp_cvErode_cvErode", CV_WINDOW_AUTOSIZE);
//cvShowImage("temp_cvErode_cvErode", temp_cvErode_cvErode);
g_BinaryImage = cvCloneImage(temp_cvErode_cvErode); //// 保存膨胀腐蚀结果
///////================================================================================================检测连通区域
printf("检测连通区域\n");
CvMemStorage *liantong_storage = cvCreateMemStorage();
IplImage* liantogn_dst = cvCreateImage(cvGetSize(g_BinaryImage), 8, 3);
//提取轮廓
cvFindContours(g_BinaryImage, liantong_storage, &contour, sizeof(CvContour), CV_RETR_CCOMP, CV_CHAIN_APPROX_SIMPLE);
cvZero(liantogn_dst);//清空数组
IplImage *result = cvCreateImage(cvSize(liantogn_dst->width, liantogn_dst->height), IPL_DEPTH_8U, 3);
cvCvtColor(src_his, result, CV_GRAY2BGR);//先转成RGB图像,方便上色
int n = -1, m = 0;//n为面积最大轮廓索引,m为迭代索引
////-----------------------------------------------------------对连通区域做处理
for (; contour != 0; contour = contour->h_next)
{
double tmparea = fabs(cvContourArea(contour));
if (tmparea <= value2.minarea)
{
cvSeqRemove(contour, 0); //删除面积小于设定值的轮廓
continue;
}
else
{
liantong_all_area = liantong_all_area + tmparea;
}
CvRect aRect = cvBoundingRect(contour, 0);
//if ((aRect.width / aRect.height)<1)
//{
// cvSeqRemove(contour, 0); //删除宽高比例小于设定值的轮廓
// continue;
//}
CvBox2D box=cvMinAreaRect2(contour);//外接矩形
//printf("%d %d %f %f %f %f \n ", g_BinaryImage->width, g_BinaryImage->height, box.center.x, box.center.y, box.size.width, box.size.height);
//if (box.center.x - box.size.width / 2 <= 0 || box.center.x + box.size.width / 2 >= g_BinaryImage->width ||
// box.center.y - box.size.height / 2 <= 0 || box.center.y + box.size.height / 2 >= g_BinaryImage->height)
//{
//
// cvSeqRemove(contour, 0); //删除碰到边界的轮廓
// continue;
//}
CvScalar color = CV_RGB(rand() & 255, rand() & 255, rand() & 255);//随机颜色
//CvScalar color = CV_RGB(255,0,0);
if (tmparea > value2.maxarea)
{
//value2.maxarea = tmparea;
n = m;
cvDrawContours(liantogn_dst, contour, color, color, -1, -1, 8);//绘制外部和内部的轮廓
cvSeqRemove(contour, 0); //删除过大的图像
continue;
}
m++;
cvDrawContours(liantogn_dst, contour, color, color, -1, -1, 8);//绘制外部和内部的轮廓
cvDrawContours(result, contour, color, color, -1, -1, 8);//绘制外部和内部的轮廓
//cvRectangle(src_his, CvPoint(box.center.y-box.size.height,box.center.x),
// CvPoint(box.center.y + box.size.height, box.center.x + box.size.width), 3, 4, 1);//好像坐标不太对劲,因为没考虑矩形框的旋转
//cvSaveImage("fanse.jpg", liantogn_dst);
}
//cvNamedWindow("检测结果", 0);
//cvShowImage("检测结果", liantogn_dst);
cvSaveImage("连通图.jpg", liantogn_dst);
cvNamedWindow("检测结果", 0);
cvShowImage("检测结果", result);
cvSaveImage("jian.jpg", result);
printf("结束\n");
return Feature_value2; ////返回该数组
}
//划痕检测
void CheckScratch()
{
Mat image, imagemen, diff, Mask;
image = imread("C:\\Users\\lenovo\\Desktop\\img\\IMG_1725.BMP");
//image = imread("F:\\workplace\\matlab_c\\matlab_c\\saveImage.jpg");
//均值模糊
printf("高斯滤波\n");
GaussianBlur(image, imagemen, Size(5, 5),0,0);
//图像差分
printf("差分操作\n");
subtract(imagemen, image, diff);
//同动态阈值分割dyn_threshold
printf("阈值分割\n");
threshold(diff, Mask, 30, 255, THRESH_BINARY_INV);
//cvNamedWindow("imagemean", 0);
//imshow("imagemean", imagemen);
//cvNamedWindow("diff", 0);
//imshow("diff", diff);
//cvNamedWindow("Mask", 0);
//imshow("Mask", Mask);
Mat imagegray;
cvtColor(Mask, imagegray, CV_RGB2GRAY);
vector<vector<Point>> contours;
vector<Vec4i>hierarchy;
findContours(imagegray, contours, hierarchy, CV_RETR_TREE, CV_CHAIN_APPROX_SIMPLE, Point(0, 0));
Mat drawing = Mat::zeros(Mask.size(), CV_8U);
int j = 0;
printf("contours\n");
for (int i = 0; i < contours.size(); i++)
{
Moments moms = moments(Mat(contours[i]));
double area = moms.m00;//零阶矩即为二值图像的面积 double area = moms.m00;零阶距.m00表示轮廓的面积,.m10为轮廓重心
//如果面积超出了设定的范围,则不再考虑该斑点
if (area > 100 && area < 1000000)
{
drawContours(drawing, contours, i, Scalar(255), FILLED, 8, hierarchy, 0, Point());
j = j + 1;
}
}
Mat element15(3, 3, CV_8U, Scalar::all(1));
Mat close;
morphologyEx(drawing, close, MORPH_CLOSE, element15);
//cvNamedWindow("drawing", 0);
//imshow("drawing", drawing);
//waitKey(0);
vector<vector<Point> > contours1;
vector<Vec4i> hierarchy1;
findContours(close, contours1, hierarchy1, CV_RETR_TREE, CV_CHAIN_APPROX_SIMPLE, Point(0, 0));
//cvNamedWindow("close", 0);
//imshow("close", close);
//waitKey(0);
j = 0;
int m = 0;
printf("contours num:%d\n", contours1.size());
for (int i = 0; i < contours1.size(); i++)
{
Moments moms = moments(Mat(contours1[i]));
double area = moms.m00;//零阶矩即为二值图像的面积 double area = moms.m00;
//如果面积超出了设定的范围,则不再考虑该斑点
double area1 = contourArea(contours1[i]);
drawContours(image, contours1, i, Scalar(0, 0, 255), FILLED, 80, hierarchy1, 0, Point());
if (area > 100 && area < 1000000)
{
drawContours(image, contours1, i, Scalar(0, 0, 255), FILLED, 8, hierarchy1, 0, Point());
j = j + 1;
}
else if (area >= 0 && area <= 50)
{
drawContours(image, contours1, i, Scalar(255, 0, 0), FILLED, 8, hierarchy1, 0, Point());
m = m + 1;
}
}
char t[256];
sprintf_s(t, "%01d", j);
string s = t;
string txt = "Long NG : " + s;
putText(image, txt, Point(20, 30), CV_FONT_HERSHEY_COMPLEX, 1,
Scalar(0, 0, 255), 2, 8);
sprintf_s(t, "%01d", m);
s = t;
txt = "Short NG : " + s;
putText(image, txt, Point(20, 60), CV_FONT_HERSHEY_COMPLEX, 1,
Scalar(255, 0, 0), 2, 8);
imwrite("result.bmp", image);
printf("finished");
//cvDestroyWindow("imagemean");
//cvDestroyWindow("diff");
//cvDestroyWindow("Mask");
//cvDestroyWindow("drawing");
//cvDestroyWindow("close");
}
int main(){
//rect_detector detector;
//artifacts_detector artifacts_detector1;
//mura_detector mura_detector1;
//curve_detector curve_detector1;
//cv::namedWindow("original");
//cv::Mat img = cv::imread("C:\\Users\\lenovo\\Desktop\\img\\11.JPG");
//cv::imshow("original", img);
////cv::waitKey(1);
//// mura_detector1.enable_debug();
//artifacts_detector1.enable_debug();
//// detector.enable_debug();
//// curve_detector1.enable_debug();
////cv::Mat scr = detector.detect_screen(img);
//cv::Mat scr = img;
//artifacts_detector1.detect_artifacts(img);
//mura_detector1.detect_mura(scr);
//curve_detector1.detect_curve(scr);
//cv::imwrite("screen.jpg", scr);
//cv::waitKey();
//return 0;
//CheckScratch();
int **Tan_return;
Tan_return = on_trackbar("1.BMP");
cvWaitKey(0);
////销毁窗口,释放图片(实际运行退出时一定要销毁窗口)
//cvDestroyWindow(WindowBinaryTitle);
//cvDestroyWindow(WindowSrcTitle);
//cvReleaseImage(&g_BinaryImage);
//cvReleaseImage(&g_GrayImage);
//cvReleaseImage(&SrcImage);
getchar();
return 0;
}