forked from explainX/explainx
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpytest.py
53 lines (33 loc) · 1.28 KB
/
pytest.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
from explainx import *
from catboost import CatBoostRegressor
import pandas as pd
from xgboost import XGBClassifier as xgb
import xgboost
from sklearn.model_selection import train_test_split
# train XGBoost model
X,y = explainx.dataset_heloc()
#xgboost
model = xgboost.train({"learning_rate": 0.01}, xgboost.DMatrix(X, label=y), 100)
explainx.ai_test(X, y, model, model_name="xgboost")
from sklearn.ensemble import GradientBoostingRegressor
# Load boston dataset
X,y = explainx.dataset_boston()
# split data into train and test.
X_train, X_test, y_train, y_test = train_test_split(X,y, test_size=0.2, random_state=0)
# GradientBoostingRegressor
model = GradientBoostingRegressor()
model.fit(X_train, y_train)
# start and stop explainx
explainx.ai_test(X_test, y_test, model, model_name="gradientboostingregressor")
#test other functions that find all the graphs.
# Load Heloc dataset
X,y = explainx.dataset_heloc()
# Split data into train and test.
X_train, X_test, y_train, y_test = train_test_split(X,y, test_size=0.2, random_state=0)
# Run catboost model
model = CatBoostRegressor(iterations=150,
learning_rate=.3,
depth=2)
# Fit model
model.fit(X_train.to_numpy(), y_train)
explainx.ai_test(X_test, y_test, model, model_name="catboost")