Skip to content

Audio processing by using pytorch 1D convolution network

License

Notifications You must be signed in to change notification settings

Hadryan/nnAudio

Repository files navigation

nnAudio

Audio processing by using pytorch 1D convolution network. By doing so, spectrograms can be generated from audio on-the-fly during neural network training.

The name of nnAudio comes from torch.nn, since most of the codes are built from torch.nn.

Dependencies

Numpy 1.14.5

Scipy 1.2.0

PyTorch 1.1.0

librosa 0.7.0

Python >= 3.6

Instructions

All the required codes and examples are inside the jupyter-notebook. The audio processing layer can be integrated as part of the neural network as shown below. The demo on colab is also avaliable.

Installation

pip install nnAudio

Standalone Usage

from nnAudio import Spectrogram
from scipy.io import wavfile
import torch
sr, song = wavfile.read('./Bach.wav') # Loading your audio
x = song.mean(1) # Converting Stereo  to Mono
x = torch.tensor(x).float() # casting the array into a PyTorch Tensor

spec_layer = Spectrogram.STFT(n_fft=2048, freq_bins=None, hop_length=512, 
                              window='hann', freq_scale='linear', center=True, pad_mode='reflect', 
                              fmin=50,fmax=11025, sr=sr) # Initializing the model
                              
spec = spec_layer(x) # Feed-forward your waveform to get the spectrogram                                                        

On-the-fly audio processing

One application for nnAudio is on-the-fly spectrogram generation when integrating it inside your neural network

class Model(torch.nn.Module):
    def __init__(self, avg=.9998):
        super(Model, self).__init__()
        # Getting Mel Spectrogram on the fly
+       self.spec_layer = Spectrogram.STFT(sr=44100, n_fft=n_fft, freq_bins=freq_bins, fmin=50, fmax=6000, freq_scale='log', pad_mode='constant', center=True)
        self.n_bins = freq_bins         
        
        # Creating CNN Layers
        self.CNN_freq_kernel_size=(128,1)
        self.CNN_freq_kernel_stride=(2,1)
        k_out = 128
        k2_out = 256
        self.CNN_freq = nn.Conv2d(1,k_out,
                                kernel_size=self.CNN_freq_kernel_size,stride=self.CNN_freq_kernel_stride)
        self.CNN_time = nn.Conv2d(k_out,k2_out,
                                kernel_size=(1,regions),stride=(1,1))    
        
        self.region_v = 1 + (self.n_bins-self.CNN_freq_kernel_size[0])//self.CNN_freq_kernel_stride[0]
        self.linear = torch.nn.Linear(k2_out*self.region_v, m, bias=False)
        
    def forward(self,x):
+        z = self.spec_layer(x)
        z = torch.log(z+epsilon)
        z2 = torch.relu(self.CNN_freq(z.unsqueeze(1)))
        z3 = torch.relu(self.CNN_time(z2))
        y = self.linear(torch.relu(torch.flatten(z3,1)))
        return torch.sigmoid(y)

Using GPU

If GPU is avaliable in your computer, you should put the following command at the beginning of your script to ensure nnAudio is run in GPU. By default, PyTorch runs in CPU, so as nnAudio.

if torch.cuda.is_available():
    device = "cuda:0"
    torch.set_default_tensor_type('torch.cuda.FloatTensor')
else:
    device = "cpu"

Functionalities

Currently there are 4 models to generate various types of spectrograms.

1. STFT

Spectrogram.STFT(n_fft=2048, freq_bins=None, hop_length=512, window='hann', freq_scale='no', center=True, pad_mode='reflect', fmin=50,fmax=6000, sr=22050, trainable=False)
freq_scale: 'no', 'linear', or 'log'. This options controls the spacing of frequency among Fourier basis. When chosing 'no', the STFT output is same as the librosa output. fmin and fmax will have no effect under this option. When chosing 'linear' or 'log', the frequency scale will be in linear scale or logarithmic scale with the

2. Mel Spectrogram

MelSpectrogram(sr=22050, n_fft=2048, n_mels=128, hop_length=512, window='hann', center=True, pad_mode='reflect', htk=False, fmin=0.0, fmax=None, norm=1, trainable_mel=False, trainable_STFT=False)

3. CQT Naive Approach

CQT1992v2(sr=22050, hop_length=512, fmin=220, fmax=None, n_bins=84, bins_per_octave=12, norm=1, window='hann', center=True, pad_mode='reflect')

4. CQT Down-sampling approach

CQT2010v2(sr=22050, hop_length=512, fmin=220, fmax=None, n_bins=84, bins_per_octave=12, norm=True, basis_norm=1, window='hann', pad_mode='reflect', earlydownsample=True)

The spectrogram outputs from nnAudio are nearly identical to the implmentation of librosa. The only difference is CQT, where we normalized the CQT kernel with L1 norm and then CQT output is normalized with the CQT kernel length. I am unable to explain the normalization used by librosa.

To use nnAudio, you need to define the neural network layer. After that, you can pass a batch of waveform to that layer to obtain the spectrograms. The input shape should be (batch, len_audio).

alt text

Speed

The speed test is conducted using DGX Station with the following specs

CPU: Intel(R) Xeon(R) CPU E5-2698 v4 @ 2.20GHz

GPU: Tesla v100 32gb

RAM: 256 GB RDIMM DDR4

During the test, only 1 single GPU is used, and the same test is conducted when

(a) the DGX is idel

(b) the DGX has ongoing jobs alt text

About

Audio processing by using pytorch 1D convolution network

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 98.8%
  • Other 1.2%